
Proto-Predictive Representation of States with
Simple Recurrent Temporal-Difference Networks†

Takaki Makino MAK@SCINT.DPC.U-TOKYO.AC.JP

Division of Project Coordinate, Tokyo University, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8568 Japan

Abstract
We propose a new neural network architecture,
called Simple Recurrent Temporal-Difference
Networks (SR-TDNs), that learns to predict fu-
ture observations in partially observable envi-
ronments. SR-TDNs incorporate the structure
of simple recurrent neural networks (SRNs) into
temporal-difference (TD) networks to use proto-
predictive representation of states. Although
they deviate from the principle of predictive
representations to ground state representations
on observations, they follow the same learn-
ing strategy as TD networks, i.e., applying TD-
learning to general predictions. Simulation ex-
periments revealed that SR-TDNs can correctly
represent states with an incomplete set of core
tests (question networks), and consequently, SR-
TDNs have better on-line learning capacity than
TD networks in various environments.

1. Introduction
Predictive representations (Littman et al., 2002; Jaeger,
2000) are a relatively new group of approaches to ex-
pressing and learning grounded knowledge about partially-
observable dynamical systems. These approaches repre-
sent the state of a dynamical system as a vector of predic-
tions, based on the basic principle that important knowl-
edge about the world can be represented strictly in terms of
the relationships between predictions of observable quan-
tities. In the predictive state representations (PSRs) intro-

†We made a preliminary report of this work as an extended
abstract for a local conference (Makino, 2008), but the reported
results were much worse due to handicapped settings. Change of
the setting in this paper (SRNs and SR-TDNs to use feature vec-
tors) significantly improved performance of the proposed models,
and lead us to substantially different discussion and conclusion.

Appearing in Proceedings of the 26 th International Conference
on Machine Learning, Montreal, Canada, 2009. Copyright 2009
by the author(s)/owner(s).

duced by Littman et al. (2002), each prediction is an esti-
mate of the probability of tests, defined as some sequence
of observations given a sequence of actions.

Temporal-Difference (TD) networks (Sutton & Tanner,
2005) were one of the first proposals for an on-line learning
algorithm of predictive representations. The basic idea was
to apply TD learning in reinforcement learning to general
predictions, i.e., train each prediction targeting at the value
of another prediction or observation at a later time. The tar-
geting relations between predictions are given as a question
network, and another answer network is trained like an ar-
tificial neural network. TD learning was also incorporated
into PSRs and confirmed to work (Wolfe et al., 2005).

These approaches, however, share the same restrictions de-
rived from the basic principle of predictive representation,
i.e., an appropriate question network, or set of tests, must
be given to the learning agents. A sufficient set of tests,
namely core tests, depends on the underlying dynamics in
the environments, which is hidden for a learning agent; if
an insufficient set of tests is given, the agent fails to rep-
resent states, let alone make predictions. Several meth-
ods for automatically discovering the test set have been
proposed (James & Singh, 2004; McCracken & Bowling,
2006; Makino & Takagi, 2008), but they are based on in-
cremental searches in the space of test sets. They are not
guaranteed to reach the sufficient test set, especially when
the dynamics have deep temporal dependencies.

Our approach deviates slightly from the basic principle, and
incorporates ideas from studies on connectionism (artifi-
cial neural networks). In the long history of connection-
ism, various network architectures have been proposed for
predicting temporal sequences. One famous architecture is
the simple recurrent networks (SRNs) (Elman, 1995). Al-
though state representations in SRNs (context layers) are
not grounded on observations, it is known that SRNs are ca-
pable of predicting more complex temporal sequences than
the networks with only grounded state representations (Jor-
dan, 1986). In particular, it has been shown (Elman, 1995;
Rodriguez et al., 1999) that SRNs are capable of predicting
temporal sequences belonging to context-free grammars,

Proto-Predictive Representation of States with Simple Recurrent Temporal-Difference Networks

which is a superclass of regular expressions.

In this paper, we propose a new network architecture,
named simple recurrent TD networks (SR-TDNs), which
is a fusion of SRNs and TD networks. SR-TDNs use the
state representation from SRNs and training strategy from
TD networks, i.e., context layers and TD learning. Since
the context layers in SR-TDNs contain the prototypic infor-
mation prior to the output prediction, we call this a proto-
predictive representation of states. Proto-predictive repre-
sentation has an advantage over predictive representation
because the former can correctly represent states with an
incomplete question network.

2. Background
First, we briefly review neural networks and IO-HMMs for
showing basic notations and the learning algorithm we use.

2.1. Neural Networks

A non-recurrent, single-layer feed-forward neural network
produces an output vector xO ∈ RNO of NO units, given
an input vector xI ∈ RNI of NI units in the following rule:

zO = W · xI + θ xO = g(zO) , (1)

where zO is the vector of the weighted sum of inputs for
each output unit, W is the connection weight matrix, θ is
the bias vector, and g is an output function.

We train the network by changing W and θ so that the
input-output relation of the network approaches to the
given pairs of inputs and target outputs. In our setting, a tar-
get vector τO that corresponds to an input xI may be par-
tially valid for units that satisfy conditions associated with
them. We give a condition vector cO ∈ {0, 1}NO along τO

to calculate error eO only for selected output units:

eO
j = cO

j · (τO
j − xO

j) (j = 1, . . . , NO) . (2)

The gradient descent method for minimizing the squared
sum of error (eO)2 yields the following learning rule:

∆wji = −η · eO
j · xI

i ·
∂xO

j

∂zO
j

∆θj = −η · eO
j ·

∂xO
j

∂zO
j

, (3)

where i = 1, . . . , NI , j = 1, . . . , NO, and η is the learning
factor. When g is the sigmoid function σ(z) = 1/(1+e−z),
we can use relation ∂xO

j /∂zO
j = xO

j (1− xO
j).

A multi-layer feedforward neural network can be consid-
ered as a chain of single-layer neural networks, which
transfers the output of a network to the input of the next net-
work in the chain. The backpropagation algorithm (Rumel-
hart & McClelland, 1986) can be represented as calculating
the error of the input vector:

eI
i = cI

i ·
∑

j

[
wji · eO

j ·
∂xO

j

∂zO
j

]
. (4)

The input error vector can then be transferred back to the
output error vector of the previous network in the chain.
Using this algorithm repeatedly, we can train every con-
nection weight in a multi-layer neural network.

A neural network is called recurrent if it takes input from
the network state at previous time steps. For example,

xO[t] = g(WOI · xI[t] + WOOxO[t− 1] + θO) . (5)

where t denotes the time. Given xO[0] and xI [t] (t =
1, . . . , T), the calculation process for xO[T] in the recur-
rent network can be unfolded into a T -layer feed-forward
neural network. A training method known as backprop-
agation through time (BPTT) (Zipser, 1990) is equivalent
to applying the backpropagation algorithm to this unfolded
feed-forward network. To reduce the cost of calculation,
we truncate the unfolded network in terms of Tback, i.e.,
the time steps going back; in other words, the errors back-
propagate up to xO[T − Tback], and no further than that.

2.2. Input-Output Hidden Markov Models

Input-output Hidden markov models (IO-HMMs) (Bengio
& Frasconi, 1995) is a Hidden markov model with input,
which is similar to partially-observed Markov decision pro-
cesses (POMDPs) except that IO-HMMs has no decisions
(actions are given externally, and rewards are unused).

We denote an IO-HMM as a tuple 〈S,A, O, P 〉, where S is
the state space, A = {α1, . . . , αNA

} is the input (action)
space, o ∈ O ⊆ {0, 1}NO is the NO-bit observation vector,
and P (s, a, o, s′) : S×A×O×S → [0, 1] is the probability
of observing o and changing to state s′ at the next time step
given the current state s and action a. An agent is required
to learn the prediction, T (o|a, t) = Pr(o[t+1] = o | a[t+
1] = a,o[t], a[t], o[t − 1], a[t − 1], · · ·), i.e., conditional
probability of future observations given a past sequence of
observations and inputs, without knowing P (s, a, o, s′).

Generally, even with a full knowledge of P (s, a, o, s′), one
cannot determine the current state, s[t], from past observa-
tions and inputs. The best reasoning using P (s, a, o, s′) is
to maintain a belief state, b[t], whose element bs[t] speci-
fies the conditional probability of the agent at time t being
in state s.

bs′ [t + 1] = Pr(s′|o[t + 1], a[t + 1], b[t])

=
∑

s∈S bs[t]P (s, a[t + 1],o[t + 1], s′)
T ∗(o[t + 1]|a[t + 1], t)

, (6)

where T ∗(o|a, t) is an oracle, or the theoretically best pre-
diction obtained by learning:

T ∗(o|a, t) =
∑

s,s′∈S

bs[t]P (s, a, o, s′) . (7)

Proto-Predictive Representation of States with Simple Recurrent Temporal-Difference Networks

In the following, the learning algorithms are measured in
terms of mean squared error from the oracle T ∗(o|a, t) for
a given time window, L:

MSE[t0] =
1
L

t0−1∑

t=t0−L

∑

o∈O

[
T (o|a[t + 1], t)

− T ∗(o|a[t + 1], t)
]2

. (8)

3. Network Architectures
In this section, we give the definitions of the network ar-
chitectures. First, we explain two existing network archi-
tectures, i.e., simple recurrent networks (SRN) with inputs,
and TD networks. After that, we propose a new network
architecture, simple recurrent TD networks (SR-TDNs).

Figure 1 illustrates these network architectures with an em-
phasis on their similarities. The main differences lie in the
source of state information (the bottom left of each subfig-
ure) and the target of learning (the top of each subfigure).

3.1. Simple Recurrent Networks with Inputs

Simple recurrent networks (SRN) (Elman, 1995) are de-
signed to predict observations in hidden Markov models,
that is equivalent to IO-HMMs with only one input. We
made a straightforward extension to SRNs so that it can
predict IO-HMMs. Formally,

xI[t] = f(xH[t− 1], o[t], a[t]) ,

xH[t] = σ(WHI ·xI[t] + θH) , and

xO[t] = σ(WOH ·xH[t] + θO) , (9)

where xI is NI -length vector of input layer, xH is NH -
length vector of hidden layer, xO is the vector of output
layer, σ is the sigmoid function, W,θ are the weight matrix
and bias vector that are modified through learning, and f
is the feature vector function that constructs network input
from external inputs and the state of the network, i.e., the
information carried from the previous time step. In SRNs,
the value of the hidden layer xH[t−1] is used as the state; in
SRNs, this state representation is called as a context layer.

Although feature vector is not used in the original proposal
of SRN, in this study we use the feature vector function that
is used in some previous studies of TD networks (Tanner &
Sutton, 2005b; Tanner & Sutton, 2005a) for fair compari-
son between architectures:

f(x,o, a) = (a1o1, a2o1, . . . , aNA
o1, a1o2, . . . , aNA

oNO
,

a1x1, . . . , aNAx1, a1x2, . . . , aNAxN)T , (10)

where N is the length of x and a = (a1, . . . , aNA)T is the
NA-bit vector representation of input a:

ai =

{
1 a = αi

0 otherwise
. (11)

c
O[t]

WOH

a[t +1] a[t +1] a[t +1]

o[t +1]

Context layer
(state representation)

Prediction targets

Hidden layer

Output
layer

Inputs

Condition
Vector

T
ra

in
in

g
 d

at
a

N
et

w
o

rk
 s

tr
u

ct
u

re

WHI

a[t]o[t]

x
I[t]

xH[t −1]

x
O[t]

x
H[t]

(a) SRN with Inputs

x
O[t]

x
O[t +1]

c
O[t]

WOI

a[t]

a[t +1] a[t +1] a[t +1] a[t +1]

o[t]

o[t +1]

Predictive repre-
sentation of states

Answer
network

Question
network

Question targets

x
I[t]

xO[t −1]

(b) TD network

WOH

Proto-predictive
state representation

WHI

a[t]o[t]

x
I[t]

xH[t −1]

x
H[t]

x
O[t]

c
O[t]

a[t +1] a[t +1] a[t +1] a[t +1]

o[t +1] x
O[t +1]

(c) SR-TDN

Figure 1. Network architectures. Circles: neural units, thick black
arrows: network connections, white arrows: copying over adja-
cent time steps, double-headed arrows: feedback from training
data, dotted lines: feedforward/feedback relations whose condi-
tion is not satisfied.

Proto-Predictive Representation of States with Simple Recurrent Temporal-Difference Networks

α
1

α
2

y1 y2

y3 y4 y5 y6

α
2

α
2

α
1

α
1

Figure 2. Example of TD network we focused on in this paper.
Square denotes observation node.

↔ 0 0 0 0 1 0 0 0 ↔
Figure 3. 8-state ring world. Both ends are connected. 0 and 1 de-
note observation from the places. Agent can move left and right.

↔ 1 1 1 1 ↔
Figure 4. 10-state Bomb Ring world. 1 denotes working bomb,
1 denotes faulty bomb. An agent can move left, move right, and
kick. Observation consists of two bits, bomb and flash. All bombs
seem identical. If the agent kicks a working bomb and takes any
two actions, the agent observes a flash regardless of the agent’s
position, and the bomb is reset.

The target of the output o[t + 1] is conditioned by each
possible input at t + 1. In training, the output units corre-
sponding to the actual input a[t + 1] are trained with the
result of observation o[t + 1]. Formally,

〈τO[t], cO[t]〉 =

〈

o1[t + 1]
...

o1[t + 1]
o2[t + 1]

...
oNO [t + 1]

,

a1[t + 1]
...

aNA
[t + 1]

a1[t + 1]
...

aNA [t + 1]

〉
. (12)

In case of NA = 1, this network is equivalent to the
original SRN. Predictions about future observations can
be obtained from the output units of the network, i.e.,
T (oj |ai, t) ∝ xO

NA(j−1)+i[t]. Other architectures ex-
plained below are also designed so that the same equation
gives the prediction of the network.

3.2. TD Networks

The purpose of TD networks (Sutton & Tanner, 2005) is
to learn the prediction of future observations obtained from
the environment. A TD network consists of a set of nodes
and links, and each node represents a single scalar predic-
tion. A node has one or more links directed to other nodes
or observations from the environment, which denotes the
targets of the node’s prediction. A link may have a con-
dition, which indicates that the node is a conditional pre-
diction of the target. This set of nodes and links is called a
question network since each node represents some question
about the environment.

As in the previous studies (Tanner & Sutton, 2005b), we

have focused on a subset of TD networks, in which every
node has a single target (the parent node), every link is con-
ditioned with an action (input), and there are no loops in the
question network. Figure 2 is an example of such a TD net-
work for a scalar observation. Node y1 predicts observation
at the next step if action α1 is taken. Node y4 predicts the
value of node y1 at the next step if action α2 is taken; con-
sequently, y4 gives the prediction for observation after two
steps of actions, α2α1. In the following, we have denoted
p(yi) ∈ {o1, · · · , oNO , y1, · · · , yi−1} as the parent node of
yi, and a(yi) as the condition for the link between yi and
p(yi) (a(yi) = 1 if the condition is met, otherwise 0).

To provide answers to the questions asked by the question
network, each node in a TD network also works as a func-
tion approximator. The inputs to the function approxima-
tor of a node are defined by answer network, taking values
from other nodes, available observations, and the next in-
put. These function approximators are trained so that the
nodes output the answers to the question asked by the ques-
tion network.

The answer networks can be represented as the following
neural network (Fig. 1b):

xI[t] = f(xO[t− 1], o[t], a[t]) , and

xO[t] = σ(WOI ·xI[t] + θO) , (13)

where f is given by Eq. (10). Since the state of the network
is the result of prediction at the previous time step, we say
that the TD network uses a predictive state representation.
This network can make an accurate prediction only if pos-
sible belief states in the environments can be distinguished
by the representation; in other words, the set of questions
must be sufficient to represent the state.

The training data and condition vector are as follows:

〈τO[t], cO[t]〉 =

〈

p(y1)[t + 1]
...

p(yn)[t + 1]

,

a(y1)[t + 1]
...

a(yn)[t + 1]

〉

(14)

where

p(yi)[t] =

{
oj [t] if p(yi) = oj (j ∈{1, . . . , NO})
xO

k [t] if p(yi) = yk (k ∈{1, . . . , i− 1}). (15)

In the experiments, we use question networks that are me-
chanically generated as follows. The first NONA nodes
were targeted to predict every observation bit for every pos-
sible action. Then, for each prediction node sequentially
from y1, NA child nodes are assigned, and conditioned by
each possible action. This assignment is repeated until the
number of nodes reaches the given limit NP .

3.3. Simple Recurrent TD Networks

We propose a simple recurrent TD network (SR-TDN),
which has the structure of an SRN with the learning strat-

Proto-Predictive Representation of States with Simple Recurrent Temporal-Difference Networks

egy of TD networks. The core idea underlying TD net-
works is to train a network to predict its own future out-
put, in addition to the observation, through temporal dif-
ferences. Although TD networks use xO[t − 1], the out-
put prediction at time t − 1, as the state representation at
time t, it is reasonable to replace the state representation
with xH [t − 1], i.e., the values of the hidden units at time
t− 1, because xH [t− 1] represents a prototypic data prior
to xO[t− 1]. Note that this replacement causes a slight de-
viation from the principle of predictive representation that
uses state representation grounded on the observable quan-
tities. To make distinction, we say that SR-TDNs use proto-
predictive representations of states.

This idea can be implemented by incorporating the idea of
TD networks into an SRN (Fig. 1c). Formally, an SR-TDN
has the same connectivity as an SRN (Eq. 9). Input and
training data for the SR-TDN is the same as a TD network,
i.e., Eq. (10) as input, and Eq. (14) as the training data.

Unlike predictive state representation, proto-predictive rep-
resentations are capable of carrying redundant information
in addition to prediction for the given question network.
The answer network can utilize this redundancy for repre-
senting prediction beyond the question network, especially
when it uses temporal learning algorithms such as BPTT.
Consequently, it is possible that proto-predictive repre-
sentations learn to distinguish hidden states of IO-HMMs
correctly, even if only an insufficient question network is
given. In the next section, we empirically investigate the
expressive power of proto-predictive representations.

4. Experiments
We conducted a series of simulation experiments in var-
ious partially-observable environments. Figures 3 and 4
show the 8-state ring world (Tanner & Sutton, 2005a) and
the Bomb-ring world, respectively. All other environments
are taken from the POMDP problem repository (Cassan-
dra, 1999) and converted to IO-HMMs by stripping off the
rewards. Table 1 summarizes the environments. For all en-
vironments, 30 sequences of 2 × 106 observations and in-
puts (actions) were generated with uniform random policy,
and all network architectures were trained on this set of se-
quences. Before the beginning of each sequence, every net-
work was initialized with a random connection. The mean
squared error of prediction from the oracle was measured
(Eq. 8) with L = 104, and averaged over 30 sequences.

In all experiments, we set NP = NH = 40. We applied
BPTT to TD networks1 even though no previous study
had done so, because we wanted to focus on differences

1BPTT on TD networks can be easily derived by unfolding
Eq. (13), like unfolding Eq. (5), and applying a standard back-
propagation (Eq. 4) to it.

Table 1. Summary of test environments
NA NO |S|

(a) Tiger 3 1 5
(b) Network 4 1 7
(c) Paint 4 1 4
(d) Shuttle 3 5 8
(e) Bridge Repair 12 5 5
(f) Cheese 4 7 11
(g) 8-state Ring 2 1 8
(h) Bomb Ring 3 2 29

between network architectures. The parameter Tback, the
number of backpropagating steps in BPTT, was set to
3. The learning rate η is initialized with 0.1, and after
1,000,000 steps, η is halved for every 150,000 steps.

Figure 5 plots the results of experiments. In addition to
SRN with feature vector input, we also tested “SRN w/o
fv”, SRN with conventional input (which is just a concate-
nation of x, o and a). We can see that all the network ar-
chitectures made good predictions in simple environments
(a–c). As the environments gets complex (d–h), the pre-
dictions by TD networks became less accurate. The reason
may be that the given question network was insufficient for
correct representation of the states of these environments.
This is likely because a question network is mechanically
generated for every possible pair of observations and in-
puts up to a specified number of units (NP = 40), and
these environments have a relatively large number of ob-
servations and inputs. In particular, TD networks failed to
learn Bomb-ring environment (h), because the agent cannot
distinguish the faulty bomb from working bombs.

However, using the same insufficient question networks,
the SR-TDNs successfully learned accurate predictions in
these environments. This improvement is not due to the
extra layer added to the SR-TDNs, because adding a hid-
den layer to TD networks did not improve learning (plot-
ted as “TD network w/ hid”). These results demonstrate
high expressive power of proto-predictive state representa-
tions, which can distinguish hidden states even when the
predicted answers for the states are identical.

At the same time, we observed a slight instability of SR-
TDNs. For example, in 1 of 30 trials for learning Bomb
Ring environment (h), an SR-TDN had slipped back to er-
roneous prediction for a while (showed as a convex in the
result). Such instability may be caused by the deviation
from the principle of predictive representation, that is, to
ground the state representation on observable quantities.
However, we argue that the instability of SR-TDNs is less
serious than that of SRNs. Context layers in SRNs tend
to accumulate errors, especially when the dependency to
the observation is long; we can see that SRNs show spiky
results in 8-state Ring world (h). On the other hand, SR-
TDNs are smoother in the same setting, suggesting that
the SR-TDNs can learn better state representations through
predicting answers for the question network.

Proto-Predictive Representation of States with Simple Recurrent Temporal-Difference Networks

SRN w/o fvSRN TD Network SR-TDN half learning rateTD Network w/ hid

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

(a) Tiger (b) Network

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 1e-05

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

(c) Paint (d) Shuttle

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 1e-05

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

(e) Bridge repair (f) Cheese

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

(g) 8-State ring (h) Bomb ring

Figure 5. Test results. X-axis: simulation time (× 103), Y-axis: mean squared error. Dotted vertical lines correspond to points when the
learning rate η is halved.

Proto-Predictive Representation of States with Simple Recurrent Temporal-Difference Networks

5. Discussion
5.1. SR-TDNs as an extension of SRNs

So far, we presented SR-TDNs from the viewpoint of TD
networks. However, we can also regard SR-TDNs as ex-
tension of SRNs that uses more complex learning signal
derived from TD networks. To our knowledge, no previous
study on SRNs has used such a kind of learning signal, i.e.,
the output of the network itself at the next time step. Here
we discuss the advantage of SR-TDNs over SRNs.

As shown in the previous section, SR-TDNs showed better
learning performance compared to SRNs in environments
with deep temporal dependencies. It has been observed that
SRNs (without BPTT) require exponentially long learning
time for long temporal dependencies with indistinguish-
able intermediate sequences (Servan-Schreiber et al., 1988,
p.28). The learning signal in SR-TDNs can bootstrap learn-
ing by producing some information in intermediate steps,
which effectively reduces the temporal gap between depen-
dencies that must be discovered by the hidden layer repre-
sentation. We claim that, in this point, SR-TDNs are an
important contribution to the research of SRNs.

5.2. Eligibility Traces and BPTT

Tanner and Sutton (2005a) proposed a TD(λ) network,
which is an application of eligibility traces to a TD net-
work. This may seem similar to the backpropagation
through time (BPTT), i.e., the learning technique for re-
current neural networks. However, there is an important
difference between them: Eligibility traces backpropagate
through the question network, while BPTT backpropagates
through the answer network. A combination of eligibility
traces and BPTT would provide a more powerful learning
algorithm for TD networks and SR-TDNs.

5.3. Possibility of Hybrid Architectures

One future direction for research is to investigate hybrid
network architectures. Because of the flexible learning ca-
pacity of the neural network architecture, it is easy to com-
bine several network architectures.

For example, a hybrid of a TD network and an SR-TDN
would have a state representation consisting of two parts;
one (the grounded representation) is taken from the output
layer and the other (the intermediate representation) from
the hidden layer. Another possibility is to combine an SR-
TDN with history-based technique for TD network (Tanner
& Sutton, 2005b). Although we didn’t use history in our
experiments, it is likely that the history-based technique
helps SR-TDNs as it helped TD networks.

There are many other possibilities for combining architec-
tures. If we explore and evaluate them, we may find a net-

work architecture with more stable learning and deep con-
text information without hand-tuned question networks.

5.4. Combining TD Networks and Connectionism

This paper is the first approach to explore the similarity
between TD networks and connectionisms. It seems that
the first proposal of TD networks (Sutton & Tanner, 2005)
has been developed based on an idea of connectionisms,
but nobody has explored this further.

Our claim is that the history of connectionism studies con-
tains many helpful ideas for improving TD networks. In
fact, we incorporated the structure of SRNs backpropaga-
tion through time (BPTT) into TD networks. There are
many other studies in connectionism, which are likely to
assist TD networks, such as real-time recurrent learning
(RTRL) (Williams & Zipser, 1989) (or, more generally,
an extended Kalman filter; Haykin, 1998, 762ff). Such
a line of research would also be helpful for other ap-
proaches pertaining to predictive representations, such as
PSRs. As the idea of TD learning has been incorporated
into PSRs (Wolfe et al., 2005), many new research opportu-
nities should emerge by importing ideas from connection-
ism through TD networks into predictive representations.

Moreover, similar ideas to some PSR studies can be found
in connectionism studies. For example, PSRs with mem-
ory (James & Singh, 2005) and TD networks with history
(Tanner & Sutton, 2005b) can be viewed as a kind of time-
delay neural networks (Waibel et al., 1989) with recurrent
connection (Ma, 2004). As another, more important ex-
ample, transformed PSRs (Rosencrantz et al., 2004) can
be regarded as homologous research into SR-TDNs within
PSRs; the differences are that (1) SR-TDNs use sigmoid
functions, which allow to represent a more powerful, non-
linear transformation of prediction, (2) learning with BPTT
allows SR-TDNs to represent predictions beyond the given
questions, and (3) SR-TDNs support on-line learning as TD
networks do.

6. Conclusion
We investigated a new network architecture for learning
IO-HMMs, that are derived from TD networks and SRNs.
SR-TDNs are a combination of the learning strategy of TD
networks and the state representation of SRNs. Through
simulation experiments with limited number of nodes, we
showed that the learning capacity of SR-TDNs is superior
to that of SRNs and TD networks. This is because SR-
TDNs use proto-predictive representation of states, which
can represent information beyond the limit of the given
question network. This paper also contributed to position-
ing TD networks within studies on artificial neural net-
works, opening the way to apply various techniques stud-

Proto-Predictive Representation of States with Simple Recurrent Temporal-Difference Networks

ied in connectionism to predictive representations. Future
work includes importing other techniques from connection-
ism studies as well as exploring new hybrid architectures.

ACKNOWLEDGEMENTS

I’d like to thank Prof. Toshihisa Takagi for his kind support.
This work was supported by KAKENHI (20700126).

References
Bengio, Y., & Frasconi, P. (1995). An input-output HMM

architecture. In Advances in neural information process-
ing systems 7, 427–434. Cambridge, MA: MIT Press.

Cassandra, A. (1999). Tony’s POMDP file reposi-
tory page. URL http://www.cs.brown.edu/research/ai/
pomdp/examples/index.html.

Elman, J. L. (1995). Language as a dynamical system. In
R. F. Port and van T. Gelder (Eds.), Mind as motion: Ex-
plorations in the dynamics of cognition, 195–223. Cam-
bridge, MA: MIT Press.

Haykin, S. (1998). Neural networks - a comprehen-
sive foundation (2nd. ed.). Upper Saddle River, NJ.:
Prentice-Hall.

Jaeger, H. (2000). Observable operator models for discrete
stochastic time series. Neural Computation, 12, 1371–
1398.

James, M. R., & Singh, S. (2004). Learning and discovery
of predictive state representations in dynamical systems
with reset. Proc. of the 21st Intl. Conf. on Machine learn-
ing (p. 53). New York: ACM Press.

James, M. R., & Singh, S. (2005). Planning in models
that combine memory with predictive representations of
state. Proc. of the 20th National Conf. on Artificial In-
telligence (pp. 987–992).

Jordan, M. (1986). Serial order: A parallel distributed pro-
cessing approach (Technical Report ICS Report 8604).
Institute for Cognitive Science, UCSD, La Jolla, CA.

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Predic-
tive representations of state. In Advances in neural infor-
mation processing systems 14, 1555–1561. Cambridge,
MA: MIT Press.

Ma, J. (2004). The capacity of time-delay recurrent neural
network for storing spatio-temporal sequences. Neuro-
computing, 62, 19–37.

Makino, T. (2008). Automatic acquisition of TD-network
in POMDP environments: Extension with SRN struc-
ture. Proc. of The 22nd Annual Conf. of the Japanese
Society for Artificial Intelligence. (3A2-2).

Makino, T., & Takagi, T. (2008). On-line discovery of
temporal-difference networks. Proc. of the 25th Intl.
Conf. on Machine Learning (pp. 632–639). Helsinki,
Finland: Omnipress.

McCracken, P., & Bowling, M. (2006). Online discov-
ery and learning of predictive state representations. In
Advances in neural information processing systems 18,
875–882. Cambridge, MA: MIT Press.

Rodriguez, P., Wiles, J., & Elman, J. L. (1999). A recurrent
neural network that learns to count. Connection Science,
11, 5–40.

Rosencrantz, M., Gordon, G., & Thrun, S. (2004). Learn-
ing low dimensional predictive representations. Proc. of
the 21st Intl. Conf. on Machine Learning (pp. 88–95).
New York: ACM Press.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel
distributed processing, vol. 1. MIT Press.

Servan-Schreiber, D., Cleeremans, A., & McClelland, J.
(1988). Encoding sequential structure in simple re-
current networks (Technical Report CMU-CS-88-183).
School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburg, PA.

Sutton, R. S., & Tanner, B. (2005). Temporal-difference
networks. In Advances in neural information processing
systems 17, 1377–1384. Cambridge, MA: MIT Press.

Tanner, B., & Sutton, R. S. (2005a). TD(λ) net-
works: temporal-difference networks with eligibility
traces. Proc. of the 22nd Intl. Conf. on Machine Learn-
ing (pp. 888–895). New York: ACM Press.

Tanner, B., & Sutton, R. S. (2005b). Temporal-difference
networks with history. Proc. of the 19th Intl. Joint Conf.
on Artificial Intelligence (pp. 865–870).

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., &
Lang, K. (1989). Phoneme recognition using time-
delay neural networks. IEEE Transactions on Acoustics,
Speech, Signal Processing, 37, 328–339.

Williams, R., & Zipser, D. (1989). A learning algorithm
for continually running fully recurrent neural networks.
Neural Computation, 1, 270–280.

Wolfe, B., James, M. R., & Singh, S. (2005). Learn-
ing predictive state representations in dynamical systems
without reset. Proc. of the 22nd Intl. Conf. on Machine
Learning (pp. 980–987). New York: ACM Press.

Zipser, D. (1990). Subgrouping reduces complexity and
speeds up learning in recurrent networks. In Advances in
neural information processing systems 2, 638–641. Mor-
gan Kaufmann.

