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ABSTRACT
We have developed a new series of multi-agent reinforcement
ing algorithms that choose a policy based on beliefs about co-p
policies. The algorithms are applicable to situations where a
is fully observable by the agents, but there is no limit on the n
ber of players. Some of the algorithms employ embedded b
to handle the cases that co-players are also choosing a policy
on their beliefs of others’ policies. Simulation experiments on
rated Prisoners’ Dilemma games show that the algorithms usi
policy-based belief converge to highly mutually-cooperative be
ior, unlike the existing algorithms based on action-based belie
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1. INTRODUCTION
Each member’s effort to maximize its own benefit constitute

cial behaviors, such as competition and cooperation. One pr
ing way to implement such behaviors on computers is to ex
a reinforcement learning algorithm into multi-agent environme
in order to provide independent trial-and-error learning for e
agent. If the agents are smart enough, such social behaviors
emerge spontaneously.

Nevertheless, past studies onN-agent reinforcement learning h
limited to specific structure of games [1, 2, 3]. Such limitations
required due to the way to extend reinforcement learning fra
work. These studies rely on the following update rule, whic
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the same as the classical TD-learning except action is replaced by
a vector of actions:

Qi(s(t), a⃗(t))← (1−α)Qi(s(t), a⃗(t))+α
[

r i(t)+γVi(s(t +1))
]

, (1)

wheres(t) is the state at timet, a⃗(t) = (a1(t), . . . ,aN(t)) is the vec-
tor of actions for all players taken at timet, Qi(s, a⃗) andVi(s) are the
expected action-state value and state value for agenti (1≤ i ≤ N),
r i(t) is the reward given to agenti as a result of actions⃗a(t), α is
the learning rate, andγ is the discount factor.

A Major problem of this formulation is that it cannot deal with
learning co-player agents. Equation 1 assumes that the expected
valueVi(s) for agenti only depends on the current states [6]. This
is equivalent to assume stateless co-players, i.e., the states of other
agents are independent of the expected value. Learning agents
change its behavior based on the learned information; it is hard
to find the best policy against such learning co-players under the
assumption of statelessness.

Recently, Weinberg and Rosenschein have tried to break this
situation by proposing the NSCP-learner [7] that finds the best-
response policy to other players’ policies. In their algorithm, agent
i maintains a model⟨π j ⟩i of another agentj (1 ≤ j ≤ N, j ̸= i)1,
and calculatesVi by using the models:

Vπi ,⟨⃗πī⟩i
i (s) = max

πi
∑

a1,...,aN

πi(s,ai) · ∏
1≤ j≤N, j ̸=i

⟨π j ⟩i
(

s,a j
)

·Qi(s, a⃗) , (2)

where the policyπi(s,ai) is the probability of agenti’s taking ac-
tion ai on condition of statesand⟨⃗πī⟩i is the vector of beliefs about
policies of the co-player agents for agenti, i.e., ⟨⃗πī⟩i = (⟨π1⟩i , . . . ,
⟨πi−1⟩i ,⟨πi+1⟩i , . . . ,⟨πN⟩i). In short, the agent uses models to an-
ticipate the actions of the co-players and calculates the state value
using the belief on their expected actions.

However, we’d like to point out that Weinberg’s extension is not
sufficient. Suppose two possible beliefs⟨π j ⟩i ,⟨π ′

j ⟩i about policies
of agent j, which choose the same actiona j for the immediate re-
sponse to states but different actions afterwards. Then the state

values for these policies,V
(...,⟨π j ⟩i ,...)
i (s) andV

(...,⟨π ′
j ⟩i ,...)

i (s) should
be able to be different, whereas eq. 2 cannot.

In this paper, we propose a new way to extend the action-value
function Q with the vector ofpolicies to solve this problem. Al-
though an agent cannot know the current policies of the co-player
agents, one can develop abelief of policies of the co-player agents
and use it for the extended action-value function. This extension
also lets us to introduce an embedded policy belief, i.e., a belief

1Weinberget al.used the notation̂π j , but in this paper, we use the
angle-bracket notation to clarify whose model is on whose policy.

789



Initialize Qi(s,a)
Repeat (for each episode):

Observe the initial states
Repeat (for each step):

Deriveπi from Qi

Chooseai from πi ands
Take actionai , observe⃗a, r,s′

Qi(s,a) ← (1−α)Qi(s,a)+α
[

r + γ maxa′i
Qi(s′,a′i)

]

s← s′ ;
until s reaches the end of the episode

Figure 1: Algorithm of a Level-0 agent of indexi (equivalent to
the original Q-learning algorithm).

Initialize Qi(⟨⃗πī⟩i ,s,a) and⟨⃗πī⟩i

Repeat (for each episode):
Observe the initial states
Repeat (for each step of episode):

DeriveΠi from Qi

πi = Πi
(

⟨⃗πī⟩i
)

Chooseai from πi ands
Take actionai , observe⃗a, r,s′

⟨⃗πī⟩′i ← New belief, obtained by updating⟨⃗πī⟩i with s anda⃗
Qi(⟨⃗πī⟩i ,s,a) ← (1−α)Qi(⟨⃗πī⟩i ,s,a) +α

[

r + γ maxa′i
Qi(⟨⃗πī⟩′i ,s′,a′i)

]

s← s′ ; ⟨⃗πī⟩i ← ⟨⃗πī⟩′i ;
until s reaches the end of the episode

Figure 2: Algorithm of a Level-1 agent of index i.

about the co-player’s policy belief, for better estimation of the co-
player’s policy. The simulation results on Iterated Prisoners’ Di-
lemma (IPD) games show that our algorithm show better results
than agents based on existing algorithms. We expect that such an
algorithm would lead us to study mathematical structure of com-
munication, such as mutual-estimation structure [4].

2. ALGORITHMS
As a starting point, we suppose a simple agent called Level-0,

which uses a single-agent Q-learning algorithm (Fig. 1). This agent
treats the other agents as a part of an environment and pays no
attention to them. As a result, such an agent can only derive a very
primitive learning in a multi-agent environment.

In the following, we discuss agents that use information of other
agent’s policies. Since agenti cannot directly see policyπ j of an-
other agentj, agenti needs to obtain an estimate⟨π j ⟩i of j ’s policy.
If agent j has a stationary policy, some kind of statistical method
can accurately estimate the policy of agentj by collecting a suf-
ficiently large sample of the co-player’s actions. Such a statisti-
cal method can be also applied to an co-player agent whose policy
changes but converges to a limit [7].

2.1 Level-1: Using Policy-based Beliefs
We can extend the algorithm of a Level-0 agent to choose actions

with regard to the policy beliefs⟨πī⟩i of other agents. One simple
way to do so is to regard the tuple of policy belief and the origi-
nal state(⟨⃗πī⟩i ,s) as an extended state. Accordingly, agenti has an
extended policyπ+

i (⟨⃗πī⟩i ,s;a) and extended action-value function
Qπ+

i
i (⟨⃗πī⟩i ,s;a). Assuming that the belief is accurate and that the

change to the policies of the other agents has the Markov property,
the agent can learn to choose an optimal policy. Thus we can de-
sign a Level-1 agent, which obtains⟨πī⟩i by using some statistical
estimation and useQπ+

i
i to choose an action.

We can have another viewpoint on this algorithm, in which a
Level-1 agenti chooses a policy, instead of just an action, by us-
ing its belief about the other agents’ policies. To choose a policy,
the agent uses ametapolicyΠi , which maps the policy belief of the
other agents⟨⃗πī⟩i to a policyπi . Interestingly, a metapolicyΠi is
just a notational variant of an extended policyπ+

i , since we can ob-

Initialize Qi(⟨⃗πī⟩i ,s,a), ⟨Π⃗ī⟩i , and⟨⟨⃗π⟩⟩i

Repeat (for each episode):
Observe the initial states
Repeat (for each step of episode):

DeriveΠi from Qi

⟨⃗πī⟩i ← ⟨Π⃗ī⟩i
(

⟨⟨⃗π⟩⟩i
)

; πi ← Πi
(

⟨⃗πī⟩i
)

Chooseai from πi ands
Take actionai , observe⃗a, r,s′

⟨Π⃗ī⟩′i ← New belief, obtained by updating⟨Π⃗ī⟩i with ⟨⟨⃗π⟩⟩i , s anda⃗
⟨⟨⃗π⟩⟩′i ← New embedded belief, obtained by updating⟨⟨⃗π⟩⟩i with s anda⃗
⟨⃗πī⟩′i ← ⟨Π⃗ī⟩′i(⟨⟨⃗π⟩⟩i)
Qi(⟨⃗πī⟩i ,s,a) ← (1−α)Qi(⟨⃗πī⟩i ,s,a)+α

[

r + γ maxa′i
Qi(⟨⃗πī⟩′i ,s′,a′i)

]

s← s′ ; ⟨Π⃗ī⟩i ← ⟨Π⃗ī⟩′i ; ⟨⟨⃗π⟩⟩i ← ⟨⟨⃗π⟩⟩′i
until s reaches the end of the episode

Figure 3: Algorithm of a Level-2 agent of index i.

tain a policy fromπ+
i by fixing ⟨⃗πī⟩i . Figure 2 shows the algorithm

of a Level-1 agent in the new notation.
Assuming that the policy beliefs are accurate and their change

has the Markov property, agenti can learn a metapolicy, which is
optimal in the sense of choosing the best policy in response to the
policies of the other agents. However, in playing with other Level-
1 agents, this assumption becomes unrealistic, since the policy se-
lected by a metapolicy changes rapidly.

2.2 Level-2: Using Embedded Beliefs
A more elaborated agent, which we call Level-2, develops a be-

lief about metapolicies of other agents. As mentioned before, a
metapolicy is a map from policy beliefs to a policy; to estimate the
policy of agentj using a metapolicy, agenti needs to have an em-
bedded belief within agentj. We denote⟨⟨πk⟩ j ⟩i to represent agent
i’s belief about agentj ’s belief about agentk’s policy. Agenti can
obtain a belief of agentj ’s policy, given metapolicy belief⟨Π j ⟩i
and embedded policy belief⟨⟨⃗π j̄ ⟩ j ⟩i about agentj:

⟨π j ⟩i = ⟨Π j ⟩i
(

⟨⟨⃗π j̄ ⟩ j ⟩i
)

. (3)

We denote the agenti’s embedded beliefs of all the other agents as
⟨−−→
⟨⃗π ·̄⟩ī

⟩

i =
(

⟨

⟨⃗π1̄⟩1
⟩

i ,...,
⟨

⟨⃗πi−1⟩i−1
⟩

i ,
⟨

⟨⃗πi+1⟩i+1
⟩

i ,...,
⟨

⟨⃗πN̄⟩N
⟩

i

)

. (4)

In a perfect information game, every agent shares the same infor-
mation, and every agent knows that the information is shared. Thus,
agenti has no reason to distinguish the embedded belief⟨⟨πk⟩ j ⟩i for
agent j from the one⟨⟨πk⟩ j ′⟩i for agent j ′, and as a result, we can
denote them as⟨⟨πk⟩⟩i . This reduces the representation of embed-

ded beliefs from
⟨−−→
⟨⃗π ·̄ ⟩ī

⟩

i to ⟨⟨⃗π⟩⟩i .
A Level-2 agent obtains an embedded belief⟨⟨πk⟩⟩i by using the

same statistical estimation method as the one for Level-1’s belief
policy; the only difference is that Level-2 needs⟨⟨πi⟩⟩i , the embed-
ded estimation of the policy of agenti itself within another agent.

Using ⟨⟨π j̄ ⟩ j ⟩i , Level-2 agenti is able to develop a belief about
the metapolicy⟨Π j ⟩i of agentj. Assuming the space of the embed-
ded policy is finite, one can perform statistical estimations for every
possible⟨⟨π j̄ ⟩ j ⟩i . By using the embedded policy belief⟨⟨⃗π ·̄⟩ī⟩i and
the metapolicy belief⟨Π j ⟩i , a Level-2 agent can derive a policy
belief ⟨⃗πī⟩i and perform reinforcement learning onQi(⟨⃗πī⟩i ,s;ai).
Note that this extended action-value function is the same as the one
in the Level-1 agent.

Figure 3 shows the algorithm of the Level-2 agent. The algo-
rithm is the same as that of the Level-1 agent (Fig. 2), except that
⟨⃗πī⟩i is now calculated from⟨⟨⃗π⟩⟩i and⟨Π⃗ī⟩i .

2.3 Level-n: Using Deeper Embedded Beliefs
We can go along this line to create higher-lever agents succes-

sively. For instance, a Level-3 agent maintains⟨⟨⟨⃗πl ⟩k⟩ j ⟩i , ⟨⟨Πk⟩ j ⟩i ,

    790



Table 1: Pay-off matrix for agents X and Y
X \ Y C D

C 3 \ 3 5\ 0
D 0 \ 5 1\ 1

and⟨Π j ⟩i ; A Level-4 agent maintains⟨⟨⟨⟨⃗πm⟩l ⟩k⟩ j ⟩i , ⟨⟨⟨Πl ⟩k⟩ j ⟩i ,
⟨⟨Πk⟩ j ⟩i , and⟨Π j ⟩i ; and so on. In any case, the innermost embed-
ded policy belief is obtained by a statistical estimation, and applied
to metapolicy beliefs to obtain a, presumably better, policy belief.

Although the number of embedded policy beliefs and metapol-
icy beliefs seems to increase exponentially, we can reduce it by as-
suming a perfect information game as in the Level-2 agent’s case.
Since agenti has no reason to distinguish⟨⟨Πk⟩ j ⟩i from ⟨⟨Πk⟩ j ′⟩i ,
we can combine them into⟨⟨Πk⟩⟩i . Similarly, ⟨⟨⟨⃗πl ⟩k⟩ j ⟩i for anyk
and j can be reduced to⟨⟨⟨⃗πl ⟩⟩⟩i . This sort of reduction limits the
number of beliefs to a linear increase.

3. SIMULATION EXPERIMENTS
We conducted a series of simulation experiments, in which the

proposed agents play the Iterated Prisoners’ Dilemma [?], a sim-
ple two-player game. In every turn, each agent would indepen-
dently choose an action, either cooperation (C) or defection (D).
The agents would then observe the result, the choice of the other
agent and the pay-off given as in Table 1. Each agent would strive
to maximize the sum of the pay-offs for itself over many turns.
Noise in action is introduced with the probability ofε ; thus an
agent chooses unwanted action with a probability ofε/2.

In the experiments, we applied reinforcement-learning algorithms
to the game. A state refers to the last step of the action history of
the two agents, i.e.,s(t) = (aother(t − 1),aself(t − 1)); thus there
are four possible states. Since we only used a deterministic policy,
a policy becomes a four-dimensional vector ofC or D. In other
words, the policy space has only 24 = 16 elements.

We specified an agent’s belief space of another’s policy to be
equal to the policy space of the agent itself, that is, a four-dimensional
vector ofC orD. The statistical estimation method of the policy be-
lief is simple; whenever the agent observes an action different from
the policy belief, the agent replaces the corresponding element of
the belief vector to make the belief match the observation.

We also provide two series of variants for comparison with our
algorithm. One is Level-0(H3) agent, which is the same as Level-0
agent except that it uses three steps of action history as the state of
reinforcement learning so that this agent has the same table size as
the Level-nagents (n≥ 1) without using beliefs. The other is Level-
n(A) agents, which uses action beliefs⟨⃗a j̄ ⟩i instead of policy beliefs
⟨⃗π j̄ ⟩i . Metapolicy reduces to a map from expected opponent’s ac-
tion ⟨⃗a j̄ ⟩i to a policy, and so do metapolicy beliefs. Note that the al-
gorithm of the Level-1(A) agent is equivalent to the NSCP-learner
algorithm [7] (see eq. 2). To distinguish from these variants, we
denote agents based on our proposed algorithms as Level-n(P).

In all of the simulations described below, we fixedα = 0.03 and
γ = 0.99. Since our interest is in the ability of agents playing
against peer agents, we focused on simulations that cover only the
case that two equivalent agents play IPD games.

3.1 Results
Figure 4 shows averaged pay-off over 2,000 trials of the IPD

game by two same-level agents. After the initial learning time, the
proposed Level-n(P) agents (n≥ 1) obtained average pay-offs very
close to 3, the best pay-off that can be obtained only by mutual
cooperation. This shows clear contrast to the pay-offs obtained by
Level-0, Level-0(H3), and Level-n(A) agents; in fact, in the ex-
periments of each of these agents, the agents failed learning to act
cooperatively in more than 30% of the trials. These results indi-
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Figure 4: Average pay-off after learning with various ε values.
Pay-off is averaged for5×108 steps after5×108 learning. The
upper graph enlarges the top part of the lower graph.

cate that our Level-n(P) agents have better ability to recognize the
situation with peer learning agent and to learn the optimal policy.

Effects of having deeper embedded beliefs are not clear, except
slight loss of pay-off is observed in case ofε = 0.0001. This indi-
cates that there is some penalty to keep deeply embedded beliefs in
noisy environments. However, since the penalty is very small, we
can say that our algorithm is robust to the noise.

4. SUMMARY
We developed a new series of multi-agent reinforcement-learning

algorithms that choose a policy based on beliefs about co-players’
policies. The algorithms are applicable when a state is fully ob-
servable, and there is no limit on the number of players or a par-
ticular configuration of pay-offs. By assuming that the co-players
also use policy-based beliefs to choose a policy, we also presented
algorithms that use various depths of embedded policy beliefs.

We compared the algorithms of different embedding depths and
algorithm variants through a series of simulation experiments on
the IPD game. The results showed that the algorithms using policy-
based belief converged to mutually cooperative behavior, unlike the
existing algorithms based on action-based beliefs.
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