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POMDP環境中でのTD-Networkの自動獲得: 単純再帰構造による拡張

Automatic Acquisition of TD-Network in POMDP Environments: Extension with SRN structure
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We propose a new neural network architecture, Simple recurrent TD Networks (SR-TDNs), that learns to predict
future observations in partially observable environments, using proto-predictive representation of states. SR-TDNs
incorporate the structure of simple recurrent neural networks (SRNs) into temporal-difference (TD) networks to
use proto-predictive representation of states. Our simulation experiments revealed that these networks have better
on-line learning capacity than TD networks in various environments.

1. Introduction

Predictive representations[Littman 02, Jaeger 00] are a rel-
atively new group of approaches to expressing and learning
grounded knowledge about partially-observable dynamical sys-
tems. These approaches represent the state of a dynamical system
as a vector of predictions, based on the basic principle that im-
portant knowledge about the world can be represented strictly in
terms of the relationships between predictions of observable quan-
tities. In thepredictive state representations(PSRs) introduced
by Littman et al. [Littman 02], each prediction is an estimate of
the probability oftests, defined as some sequence of observations
given a sequence of actions.

Temporal-Difference (TD) networks [Sutton 05] were one of the
first proposals for an on-line learning algorithm of predictive rep-
resentations. The basic idea was to apply TD-learning techniques
in reinforcement learning to general predictions, i.e., train each
prediction targeting at the value of another prediction or observa-
tion at a later time. The targeting relations between predictions are
given as aquestion network, and anotheranswer networkis trained
like an artificial neural network. TD networks demonstrated their
efficiency for learning predictions; later, the idea was also incor-
porated into PSRs and proven to work [Wolfe 05].

These approaches, however, share the same restrictions de-
rived from the basic principle of predictive representation, i.e.,
they have required that a specified set of tests, or question net-
works, to be sufficient for representing the state of a dynami-
cal system. A sufficient set of tests, orcore tests, can only be
computed when the underlying dynamics in the environments is
known in advance; if an insufficient set of tests is given, an agent
can only have an insufficient representation of a state, and conse-
quently, an accurate prediction cannot be learned. Several meth-
ods for automatically discovering the test set have been proposed
[James 04, McCracken 06], but they are based on greedy searches
in the space of test sets, and habe thus been theoretically unable to
deal with various simple dynamics.

Our approach deviates slightly from the basic principle, and
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incorporates ideas from studies on connectionism (artificial neu-
ral networks). In the long history of connectionism, various net-
work architectures have been proposed for predicting temporal se-
quences. One of the most famous architectures is the simple re-
current networks (SRNs; [Elman 95]). Although SRN’scontext
layers(state representations in SRNs) are not grounded on obser-
vations, it is known that SRNs are capable of predicting more com-
plex temporal sequences than the networks with only grounded
state representations (e.g. Jordan’s networks [Jordan 86]).

In this paper, we propose a new network architecture called Sim-
ple recurrent TD networks (SR-TDNs), which is a fusion of SRNs
and TD Networks. SR-TDNs uses the state representation from
SRNs and training strategy from TD networks, i.e., context lay-
ers and TD learning. In spite of deviation from the principle of
predictive representations to ground state representations on ob-
servations, SR-TDNs follow the same learning strategy as TD net-
works, i.e., applying TD-learning to general predictions. Since the
context layers have the prototypic information prior to the output
prediction, we call this aproto-predictive representationof states.
We show that SR-TDNs performs good learning in simulations.

2. Partially-Observed MDP
A partially-observable Markov decision process (POMDP) is a

tuple⟨S,A,O,P⟩, whereS is the state space,A = {a1, . . . ,a|A|} is
the action space,O = {o1, . . . ,o|O|} is the observation space, and

P(s,a,o,s′) : S×A×O×S→ [0,1] is the probability that action
a in states at timet will give observationo and lead to states′ at
time t +1. An agent is required to learn the prediction,T(o|a, t) =
Pr(o[t + 1] = o|a[t + 1] = a,o[t],a[t],o[t − 1],a[t − 1], · · ·), i.e.,
a conditional probability of a future observation given a past se-
quence of observations and actions, without knowingP(s,a,o,s′).

Generally, even with a full knowledge ofP(s,a,o,s′), one can-
not determine the current state,s[t], from past observations and
actions. The best reasoning with knowledge aboutP(s,a,o,s′) is
to maintain a belief state,b[t], whose elementbs[t] specifies the
conditional probability of the agent at timet being in states.

bs′ [t+1]=Pr(s′|o[t+1],a[t+1],b[t])= ∑s∈S bs[t]P(s,a[t],o[t],s′)
T∗(o[t+1]|a[t+1], t)

(1)
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whereT∗(o|a, t) is an oracle, or the theoretically best prediction
obtained by learning. In the following, the learning algorithms are
measured in terms of the mean squared error between the agent’s
prediction and the oracle, for a given time window,L.

MSE[t0] = 1/L
t0+L−1

∑
t=t0

∑
o∈O

(T(o|a[t +1], t)−T∗(o|a[t +1], t))2 (2)

3. Network Architectures
In this section, we give the definitions of the network architec-

tures. First, we explain two existing network architectures, i.e.,
SRN with actions and TD Networks. After that, we describe our
proposal, simple recurrent TD networks (SR-TDN). Figure 1 illus-
trates these network architectures with an emphasis on their simi-
larities. The main differences lie in the source of state information
(the bottom left of each subfigure) and the target of learning (the
top of each subfigure).

3.1 Simple Recurrent Networks with Actions
Simple recurrent networks (SRN) [Elman 95] are designed to

predict observations in hidden Markov models, that is equivalent
to POMDPs with only one action. We made a straightforward ex-
tension to Elman’s simple recurrent network (SRN) [Elman 95],
so that it can predict POMDPs. Formally,

xH[t] = gH(WHI ·xI[t]+WHH ·xH[t −1]+bH) and (3)

xO[t] = gO(WOH ·xH[t]+bO) . (4)

The state of the network, i.e., the information carried from the
previous time step, is the value of the hidden layerxH[t]; SRN calls
this thecontext layer.

The network hasNI = |A|+ |O| input units andNO = |A| |O|
output units. The input isN-to-1 representation ofo[t] anda[t],
i.e., units corresponding to the observation or the action are set to
1, and the rest are set to 0. The target of the output is theN-to-1
representation ofo[t +1] the output, conditioned by each possible
action att +1. In training, the output units conditioned with actu-
ally taken actiona[t +1] are trained with the result of observation
o[t +1]. Formally,

xI [t] = (a1[t], . . . ,a|A|[t],o1[t], . . . ,o|O|[t])
T and (5)

⟨tO[t],cO[t]⟩ =

⟨


o1[t +1]
o1[t +1]

...
o1[t +1]
o2[t +1]

...
o|O|[t +1]


,



a1[t +1]
a2[t +1]

...
a|A|[t +1]
a1[t +1]

...
a|A|[t +1]


⟩

, (6)

where

ai [t] =

{
1 a[t] = ai

0 otherwise
(i = 1, . . . , |A|) and (7)

o j [t] =

{
1 o[t] = o j

0 otherwise
( j = 1, . . . , |O|) . (8)

When |A| = 1, this network is equivalent to the original SRN.
Predictions about future observations can be obtained from the
output units of the network, i.e.,T(o j |ai , t) = xO

j|A|+i [t]. Other

architectures explained below are also designed so that the same
equation gives the prediction of the network.
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Figure 1: Network architectures. Circles denote neural units, thick
black arrows denote network connections, white arrows denote
copying over adjacent time steps, double-headed arrows denote
feedback from training data, and dotted lines denote feedback re-
lations whose condition is not satisfied.
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Table 1. Summary of test
environments.

|A| |O| |S|
(a) Network 4 2 7
(b) Shuttle 3 5 8
(c) 4x3 Maze 4 6 11
(d) 8-state Ring 2 2 8

a1  
a2

y1 y2

y3 y4 y5 y6

a2 a2a1a1

Figure 2: Example of TD network we focused on in
this paper. Square denotes observation node.
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Figure 3: 8-state ring world.
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Figure 4: Test results, plotted with simulation time in X-axis and the mean squared error in Y-axis.

3.2 TD Networks
The purpose of TD networks [Sutton 05] is to learn the predic-

tion of future observations obtained from the environment. A TD
network consists of a set of nodes and links, and each node repre-
sents a single scalar prediction. A node has one or more links di-
rected to other nodes or observations from the environment, which
denotes the targets of the node’s prediction. A link may have a con-
dition, which indicates that the node is a conditional prediction of
the target. This set of nodes and links is called aquestion network
since each node represents some question about the environment.

As in the previous studies [Tanner 05b], we have focused on a
subset of TD networks, in which every node has a single target
(hereafter called, the parent node), every link is conditioned with
an action, and there are no loops in the question network. Figure 2
is an example of such a TD network for a scalar observation. Node
y1 predicts observation at the next step if actiona1 is taken. Node
y4 predicts the value of nodey1 at the next step if actiona2 is
taken; consequently,y4 gives the prediction for observation after
two steps of actions,a2 anda1. In the following, we have denoted
p(yi) ∈ {o1, · · · ,o|O|,y1, · · · ,yi−1} as the parent node ofyi , and

a(yi) as the condition for the link betweenyi andp(yi).
To provide answers to the questions asked by the question net-

work, each node in a TD network also works as a function ap-
proximator. The inputs to the function approximator of a node
are defined byanswer network, taking values from other nodes,
available observations, and actions to be taken. These function ap-
proximators are trained so that the output of the nodes becomes
the answers to the question asked by the question network.

TD networks can be represented as the following (Fig. 1b):

xH[t] = gH(WHI ·xI[t]+WHO·xO[t −1]+bH) and (9)

xO[t] = gO(WOH ·xH[t]+bO) . (10)

Since the state of the network is the result of prediction at the
previous time step, we say that the TD network uses a predictive
state representation. This network can make an accurate prediction
only if possible belief states in the environments can be distin-
guished by the representation; in other words, the set of questions
must be sufficient to represent the state.

The training data and condition vector are as follows:

⟨tO[t],cO[t]⟩ =

⟨p(y1)[t +1]
...

p(yn)[t +1]

,

a(y1)[t +1]
...

a(yn)[t +1]

⟩
(11)

where

p(yi)[t] =

{
o j [t] if p(yi) = o j ( j ∈ {1, . . . , |O|})
xO

k [t] if p(yi) = yk (k∈ {1, . . . , i −1})
. (12)

In the original TD networks [Sutton 05], the answer network
was represented as a matrix calculation from afeature vector,
which was given by a fixed function calculated fromxO[t − 1],
a[t], ando[t]. This feature vector corresponds to the hidden layer,
xH , in our formalization. Moreover, we can represent the fixed
feature-vector function as fixingWHI andWHO, the incoming con-
nections to the hidden layer and giving specialized output function
gH . For example, the feature vector used in some previous studies
[Tanner 05a, Tanner 05b] can be written in the following form (we
have omitted the details onWHI , WHO, andgH ):

xH [t] = (a1[t]o1[t],a2[t]o1[t], . . . ,a|A|[t]o1[t],

a1[t]o2[t], . . . . . . ,a|A|[t]o|O|[t],

a1[t]xI
1[t −1], . . . ,a|A|[t]x

I
1[t −1],

a1[t]xI
NI

[t −1], . . . . . . ,a|A|[t]x
I
NI

[t −1])T . (13)

In the experiments, we use question networks that are mechan-
ically generated as follows. The first|O||A| nodes were targeted
to predict all observation bit for all possible action: Then, for each
prediction node sequentially fromy1, |A| child nodes are assigned,
and conditioned by each possible action. This assignment is re-
peated until the number of nodes reaches the given limitNC. For-
mally, the targets and conditions for all nodes are as follows:

⟨p(y1 ),a(y1 )⟩ = ⟨o1 ,a1 ⟩
⟨p(y2 ),a(y2 )⟩ = ⟨o1 ,a2 ⟩

...
⟨p(y|O||A| ),a(y|O||A| )⟩ = ⟨o|O|,a|A|⟩
⟨p(y|O||A|+1 ),a(y|O||A|+1 )⟩ = ⟨y1 ,a1 ⟩

...
⟨p(y|O||A|+|A| ),a(y|O||A|+|A| )⟩ = ⟨y1 ,a|A|⟩
⟨p(y|O||A|+|A|+1),a(y|O||A|+|A|+1)⟩ = ⟨y2 ,a1 ⟩

... .

　

(14)
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3.3 Simple Recurrent TD Networks
We propose a modified version of the TD network, asimple re-

current TD network(SR-TDN), which has the structure of an SRN
with the learning strategy of TD networks. The core idea underly-
ing TD networks is to train a network to predict its own future out-
put, in addition to the observation, through temporal differences.
Although TD networks usexO[t −1], the output prediction at time
t−1, as the state representation at timet, it is reasonable to replace
the state representation withxH [t−1], i.e., the values of the hidden
units at timet −1, becausexH [t −1] represents a prototypic data
prior to xO[t − 1]. However, note that this replacement causes a
slight deviation from the principle of predictive representation that
uses state representation grounded on the observable quantities. To
distinguish from predictive representations, we say that SR-TDNs
useproto-predictive representationsof states.

This idea can be implemented by incorporating the idea of TD
networks into an SRN (Fig. 1c). More precisely, an SR-TDN has
the same connectivity as an SRN (eqs.3 and 4). Input and training
data for the SR-TDN is the same as a TD network, i.e., Eq. (5) as
input, and Eq. (11) as the training data.

4. Experiments

We conducted a series of simulation experiments in various
POMDP environments that are used by existing studies..

Figure 3 shows one of these, an 8-state ring world. There are
two possible observations, 0 or 1, and two actions are available, L
and R. Some of the other environments are taken from the POMDP
problem repository [Cassandra 99]. Table 1 summarized the envi-
ronments.

For all environments, 30 sequences of 2×106 observations and
actions were generated with a uniform random policy. All network
architectures were trained on the same set of sequences; a network
was initialized with random connection weights before the begin-
ning of each sequence. The mean squared error of prediction was
measured as in Eq. (2) withL = 10,000. The parameterTback, the
number of backpropagating steps in BPTT, was set to 3.

Figure 4 plots the results of experiments. We can see that all
the network architectures made good predictions in simple envi-
ronments such as (a). However, in complex environments (b–c),
the predictions by TD networks became less accurate. The reason
may be that the given question network was insufficient for cor-
rectly representing the states of these environments. This is likely
because a question network is mechanically generated for every
possible pair of observations and actions up to a specified num-
ber of units (NP = 40), and these environments have a relatively
large number of observations and actions. It is noteworthy that the
SR-TDNs successfully learned accurate predictions in these envi-
ronments, using the same, insufficient question networks.

In the graph for the 8-state ring (d), the SR-TDN seems much
worse than the TD networks. This is because the SR-TDN failed
to learn prediction in 1 out of 30 trials∗1. In the other 29 trials, SR-
TDN learns equally accurate prediction to the TD network with
feature vectors. These results imply that SR-TDNs are unstable
due to deviation from the principle of predictive representation.
Also note that, in additional experiments withTback= 1, TD net-

∗1 Since error was averaged arithmetically and the Y-axis of the graph is
log-scaled, 1 failure out of 30 trials made a large difference in the graph.

works with feature vectors produced much worse results, while
SR-TDNs experienced little change.

5. Conclusion
We investigated a new neural network architecture for POMDP

learning. A Simple Recurrent TD Networks (SR-TDNs) are a
combination of the learning strategy of TD networks and the state
representation of SRNs. Through computer simulation experi-
ments, we found that the learning capacity of these architectures
are beyond the limitation from the given question network but they
showed some unstable behavior in learning, possibly caused by the
deviation from the principle of predictive representation.
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