
On-line Discovery of Temporal-Difference Networks

Takaki Makino mak@scint.dpc.u-tokyo.ac.jp

Division of Project Coordinate, Tokyo University, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8568 Japan

Toshihisa Takagi tt@k.u-tokyo.ac.jp

Database Center for Life Science, Research Organization of Information and Systems, Tokyo 113-0022 Japan

Abstract

We present an algorithm for on-line, incre-
mental discovery of temporal-difference (TD)
networks. The key contribution is the estab-
lishment of three criteria to expand a node in
TD network: a node is expanded when the
node is well-known, independent, and has a
prediction error that requires further expla-
nation. Since none of these criteria requires
centralized calculation operations, they are
easily computed in a parallel and distributed
manner, and scalable for bigger problems
compared to other discovery methods of pre-
dictive state representations. Through com-
puter experiments, we demonstrate the em-
pirical effectiveness of our algorithm.

1. Introduction

Predictive representations (Littman et al., 2002;
Jaeger, 2000) are a relatively new group of approaches
for expressing and learning grounded knowledge about
dynamical systems. These approaches represent the
state of a dynamical system as a vector of predictions,
based on the hypothesis that important knowledge
about the world can be represented strictly in terms
of relationships between predictions of observable
quantities. In the predictive state representations
(PSRs) introduced by Littman et al. (2002), each
prediction is an estimate of the probability of tests,
defined as some sequence of observations given a
sequence of actions. Sutton and Tanner (2005)
proposed another approach for predictive represen-
tations, namely Temporal-Difference (TD) networks.
TD networks are developed as a generalization of
PSRs: in TD networks, each prediction is an estimate

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

of the probability or expected value of some function
of future predictions, actions and observations. The
predictions can be considered as “answers” to a set of
“questions” represented in the TD network.

One important problem in the research of predictive
representations is the discovery problem, that is, the
problem of determining the set of questions (or core
tests) so that the state of a dynamical system is cor-
rectly represented by the vector of predictions for these
questions. Many of the existing studies on this prob-
lem (Rosencrantz et al., 2004; James & Singh, 2004;
Wolfe et al., 2005) utilize off-line discovery and learn-
ing on PSRs, and therefore they are hardly applicable
to both implementing live-interaction agents and find-
ing corresponding activity in the human brain. There
is an on-line discovery algorithm (McCracken & Bowl-
ing, 2006) for PSR core tests, but it requires complex
operations on a large matrix, such as calculation of the
maximum linear independent set, and is therefore not
suitable for parallel and distributed computing. As far
as we are aware, no algorithm has been proposed for
discovery of questions in TD networks. Study of a TD-
network discovery algorithm that is suitable for paral-
lel distributed computing would contribute not only to
research on predictive representations but also to re-
search on cognitive science by providing a hypothesis
for the algorithm actually used in the human brain.

In this study, we propose an algorithm for discovering
the correct set of tests by incremental node expansion
in a TD network. Our key contribution is in the cri-
teria that we have developed for node expansion: a
node is expanded when the node is well-known, in-
dependent, and has a prediction error that requires
further explanation. To check these criteria, our algo-
rithm maintains the average squared error and average
variance for each node, and it introduces a dependency
detection network. Since none of these criteria requires
centralized operations such as calculation of linear in-
dependence in the whole representation matrix, they

On-line Discovery of Temporal-Difference Networks

a1
a2

y1 y2

y3 y4 y5 y6

a2 a2a1a1

Figure 1. Example TD network we focus in this paper.

are easily computed in a parallel and distributed man-
ner, which is an important property for seeking the
algorithm used in the human brain. Although the al-
gorithm has no theoretical guarantee to find the ques-
tion network (indeed, it is known to be failed in some
cases), our simulation experiments demonstrate the
empirical effectiveness of our algorithm.

Section 2 reviews PSR and TD network that is neces-
sary to understand our algorithm. Section 3 describes
our incremental discovery algorithm. Experiments and
results are shown in Section 4. After that, we discuss
related work and future directions in Sections 5 and 6.

2. TD Networks

In this section, we make a brief review on TD network,
based on the work by Tanner and Sutton (2005a).

The purpose of TD networks is to learn prediction
of future observation obtained from the environment.
Consider a partially observable environment, which
changes its state according to an agent’s action at ∈ A
at every time step t, but the agent can only have a
partial (and possibly noisy) observation ot+1 ∈ O of
the state. Generally ot can be a vector consisting of l
bits, but in this paper, we consider the case that the
observation is a single bit (l = 1).

A TD network consists of a set of nodes and links,
and each node represents a single scalar prediction. A
node has one or more links directed to other nodes or
the observation from the environment, which denotes
the targets for prediction of the node. A link may
have a condition, which indicates that the node is a
conditional prediction of the target. This set of nodes
and links are called the question network since each
node is some question about the environment.

As in the previous studies (Tanner & Sutton, 2005b;
Tanner & Sutton, 2005a), we focus on a subset of
TD networks, in which every node has a single target
(hereafter, the parent node) and every link is condi-
tioned with an action. Figure 1 is an example of such
a TD network. The node y1 predicts the observation
at the next step if action a1 is taken. The node y4

predicts the value of the node y1 at the next step if

action a2 is taken, and so on.

To provide an answer for the questions asked by the
question network, each node in a TD network works
also as a function approximator. The inputs to the
function approximator of a node are defined by answer
network, taking values from other nodes, available ob-
servations, and actions to be taken. These function
approximators are trained so that the output of the
nodes becomes the answers to the question asked by
the question network. However, to provide an accurate
answer, the set of nodes have to be a sufficient repre-
sentation for the environmental state; in other words,
a correct set of questions have to be posed by the ques-
tion network. The focus of this paper is the discovery
of the question network, i.e., to find the structure of
the question network that is sufficient for prediction.

Formally, we denote the prediction for node i at time
step t as yi

t ∈ [0, 1], i = 1, . . . , n. The prediction vector
yt = (y1

t , . . . , yn
t)T is given by the answer network:

yt = σ(Wtxt) , (1)

where xt ∈ ℜm is a feature vector, Wt is a n × m
matrix of modifiable weights, and σ is the S-shaped
logistic function σ(s) = (1 + e−x)−1.

The feature vector is a function of the preceding action,
observation, and node values:

xt = x(at−1, ot,yt−1) ∈ Rm . (2)

We used the similar form of feature vector as appeared
in the work of Tanner and Sutton (2005a); in our ex-
periments, where two actions (L and R) are possible,

x(a, o,y) =

{
(o, 1−o, y1, . . . , yn, 0, . . . , 0)T a=L
(0, . . . , 0, o, 1−o, y1, . . . , yn)T a=R

(3)

This is equivalent to separate W for each action.

The question network, which gives the target of pre-
dictions in terms of the node values at the next time
steps, is represented by a n× (n + l) matrix Za and a
vector c. Without eligibility traces, the vector of the
target values is

zt−1 = ct ⊙ Z
(
yt

ot

)
+ c̄t ⊙ yt−1 , (4)

where ⊙ is element-by-element multiplication, and
each element of Z, c and c̄ is:

zij =

{
1 yi is the parent node of yj

0 otherwise
, (5)

ci
t =

{
1 at satisfies the node yi’s condition
0 otherwise

, (6)

c̄i
t = 1 − ci

t . (7)

The elements of Z are assigned so that zi
t−1 = y

p(i)
t for

any i with ci
t = 1, where p(i) is the parent node of i.

On-line Discovery of Temporal-Difference Networks

On the other hand, if ci
t = 0, zi

t−1 = yi
t−1, and the TD

error of the node becomes zero so that only the weights
for the nodes that satisfy the condition are updated.

In this study we employ eligibility traces (Tanner &
Sutton, 2005a), which is a technique to accelerate
learning in TD-error learning by incorporating further
prediction into the learning target. In a forward view,

zt−1 = ct ⊙ Z(λzt + (1 − λ)yt) + c̄t ⊙ yt−1 , (8)

where λ ∈ [0, 1] is a parameter that controls the bal-
ance of temporally distant results in the learning tar-
get. When λ = 0, eq. (8) is equivalent to eq. (4), and
no eligibility traces are used.

However, this formula recursively contains future val-
ues of z, and it is not easy to be calculated on-line.
Tanner and Sutton (2005a) proposes an algorithm that
performs on-line update of the weight vector to make
the equivalent update as (8). Then each component
wij

t of Wt is updated by the learning rule:

wij
t+1 = wij

t + α(zi
t − yi

t)
∂yi

t

∂wij
t

= wij
t + α(zi

t − yi
t)y

i
t(1 − yi

t)x
j
t , (9)

in which the second line is derived from eq. (1).

Roughly, the operation of a TD network proceeds by
repeating the following steps: (1) Choose an action
at−1 and receive an observation ot from the environ-
ment. (2) Operate the answer network, i.e., calculate
feature vector xt = x(at−1, ot,yt−1) and obtain the
new predictions yt = σ(Wtxt). (3) Use the question
network to obtain the target value for the previous
predictions zt−1 = z(yt, ot), and update the weights
W according to the TD error zt−1 −yt−1. For details,
readers should consult the original paper of the TD
network (Sutton & Tanner, 2005) to see subtle points,
such as the precise order of calculation.

3. On-line Discovery Algorithm

We propose an algorithm that performs on-line discov-
ery of the question network. Our algorithm starts with
the minimal network, which consists of the observation
node and a set of prediction nodes for the observation
nodes, one for each action. During learning, the algo-
rithm grows the network by expanding leaf nodes by
adding a set of prediction nodes for the node. Intu-
itively, a node is expanded when the following three
criteria holds:

1. The node is well-known: The agent has suf-
ficient experience to learn the node. This crite-
rion prevents relatively unexplored nodes to be
expanded.

2. The node is independent: The prediction of
the node cannot be calculated in terms of other,
formerly known node values. In terms of PSRs,
the node represents a core test. This criterion
avoids redundant expansion of the nodes.

3. The node’s error requires further explana-
tion: The node’s prediction error is not smaller
than expected from the prediction error of the
node’s parent node. This criterion chooses the
node that has the best descriptive power for the
error in the parent node, and stops expansion
when unpredictability is solved.

In the following, we first describe the variables that
our algorithm maintains to check these criteria, and
we present more detailed conditions for the criteria.

3.1. Variables

3.1.1. Dependency Detection Network

Our algorithm uses a dependency detection network,
which tries to represent a prediction of the node yi

in terms of observation o and values of the nodes
with younger index yj (j < i). If the network suc-
ceeds to represent yi with small error, we can see that
yi is dependent to the predictions with younger in-
dex (namely, not a core test of PSRs), and exclude
it from the candidate of node expansion. Otherwise,
we can assume that yi is an independent node. Note
that it corresponds to the core test in non-linear PSRs
(Rudary & Singh, 2004) because the nodes in TD net-
works correspond to e-tests in non-linear PSRs (Sutton
& Tanner, 2005) and we use sigmoidal function in the
answer network.

Formally, the dependency detection network is repre-
sented by Dt, a n×(n+l) matrix of modifiable weights.
In the matrix dij is restricted to zero if i ≥ j − l. The
output of the network is dt = σ(Dt

(
ot

yt

)
). The network

is trained so that dt is close to yt; in other words, the
network tries to represent a prediction of the node yi

in terms of observation o and predictions with nodes
with smaller index yj (j < i). Since the indices of the
nodes are numbered in order, newly expanded nodes
are always given higher indices, and are not used by
the dependency detection network for describing older
nodes with lower indices.

Each component dij
t of Dt is updated by the learning

rule similar to eq. 9:

dij
t+1 = dij

t + αD(yi
t − di

t)
∂di

t

∂dij
t

(10)

= dij
t + αD(yi

t − di
t)d

i
t(1 − di

t)y
j
t (11)

On-line Discovery of Temporal-Difference Networks

But the update is limited in the area i < j − l. We
assign the learning rate of the dependency detection
network αD to be larger than that of the answer net-
work α to allow the dependency detection network to
track changes in the calculated node values during the
learning of the answer network (as long as the values
are dependent).

3.1.2. Average Errors

Our algorithm gathers statistical information about
the prediction and error of the TD network and the
dependency detection network. To allow on-line learn-
ing, the statistical variables are calculated in forms of
exponential moving averages:

yLERR
t+1 = ρ2 yLERR

t + (1−ρ2)((zt−yt) ⊙ (zt−yt)) (12)

dSERR
t+1 = ρ1 dSERR

t + (1−ρ1)((yt−dt) ⊙ (yt−dt)) (13)

dLERR
t+1 = ρ2 dLERR

t + (1−ρ2)((yt−dt) ⊙ (yt−dt)) (14)

where dSERR
t is a short-term average of squared pre-

diction errors, dLERR
t is a long-term average of squared

prediction errors, and 0 < ρ1 < ρ2 < 1 is a temporal
factor. When a node yi is added to the network, sta-
tistical variables are initialized as yLERR i = dSERR i

t =
dLERR i

t = 1.0so that the variables show larger errors
during the initial period of the node.

Without eligibility traces, the target variable zt is
available at time t + 1, so these parameters are eas-
ily calculated on-line. However, since eq. (12) con-
tains quadratic term for zt, on-line calculation tech-
nique with eligibility traces such as used in Tanner
and Sutton’s work (2005a) cannot be used directly.
Our implementation keeps the record of last k steps
of node values, where k is the maximum depth of the
current question network, and calculates errors of yt

and dt at time t + k.

3.2. Expansion Criteria

Using these variables, we check the criteria described
in the beginning of Section 3 as follows. The crite-
ria are checked for every time step. Since all crite-
ria are described on exponential moving averages, the
precise timing of criteria check and node expansion is
not important; it should be inserted somewhere in the
TD(λ) network learning algorithm (Tanner & Sutton,
2005a). The expansion criterion are designed to avoid
redundant expansion as much as possible because no
shrinking criterion is given.

3.2.1. The node is well-known

To avoid expanding relatively unexplored nodes, we
use the following criteria to determine whether the

node yi is well-known.

• Learning error is not in a decreasing trend (we as-
sume the error is always decreasing during initial
learning phase).

• Learning error of the node gets smaller compared
with that of its parent node.

In formal representation,

dSERR i
t ≥ dLERR i

t and (15)

dLERR i
t ≤ d

LERR p(i)
t . (16)

If p(i) is the observation bit, then d
LERR p(i)
t is consid-

ered as 1 (the largest possible value).

Eq. 15 works because these variables, representing
moving averages of errors, are initialized with the high-
est possible value (see Section 3.1.2). Thus it is ex-
pected that the short-term average error variables stay
lower than the long-term ones until the end of the ini-
tial learning period, in which the learning error is con-
stantly decreasing.

Eq. 16 is usually satisfied with a plenty amount of ex-
perience because the dependency network has no con-
nection from a child node to a parent node. The parent
node always has fewer inputs in the dependency net-
work than the child node; if the child node has an un-
explained dependency (large dLERR i

t), it is likely that
the parent node also has an unexplained dependency.

3.2.2. The node is independent

To prevent dependent (non-core test) nodes to be ex-
panded, we require that the learning error in the de-
pendency detection network is not small.

dLERR i
t ≥ θ1 (17)

θ1 is a threshold parameter that controls the require-
ment for independence.

When all the nodes that match this criterion are ex-
panded, then all the leaf nodes in the question network
becomes dependent nodes, and no further expansion
occurs. Thus, this criterion is equivalent to the as-
sumption that independent (core test) nodes does not
exist as a child of dependent (non-core test) nodes.

3.2.3. The node’s error requires further
explanation

If the prediction error of a node is larger than expected
from its parent node, it is reasonable to require further
prediction on the node to reduce the error. Otherwise,
we can infer that the error in the parent node has other
causes (e.g. another prediction node with different ac-
tion conditions has large prediction error), and further

On-line Discovery of Temporal-Difference Networks

R

0 1

00

R

L

L

L

R

00

L RR L

00
L

R

L

R

L

0 0
RR

R

Figure 2. 8-state ring world. The digit in a node represents
observation from the state, and edge labels denote actions.

Table 1. Tests for various θ1 and θ2 values in the 8-state
ring world. Values are [final number of nodes] / [steps
(×104) until learned (MSE reduces less than 10−4)].

θ1\θ2 0.005 0.0075 0.01 0.0125 0.015
0.001 18/47 20/46 16/49 6/– 6/–
0.002 18/49 18/48 18/51 6/– 6/–
0.003 18/53 18/55 16/55 6/– 6/–
0.004 18/54 18/57 16/58 6/– 6/–
0.005 18/59 18/59 16/60 6/– 6/–

prediction for the node is less important to reduce the
error of the final prediction for the observation.

In case that the parent node p(i) is purely probabilis-
tic, error distribution of the p(i)’s child nodes is pro-
portional to the probability that the conditions of the
nodes are matched; the following condition checks that
the error of the node is greater than that:

yLERR i
t ≥ γ

#yi

#yp(i)
y
LERR p(i)
t + θ2 , (18)

where #yi is the frequency that the conditions on the
chain from the observation bit to node yi is matched
(thus, #yi

#yp(i) is the relative probability that the condi-
tion of the node is matched). If p(i) is the observation
bit, then y

LERR p(i)
t is assumed to be zero. θ2 is a

threshold parameter that controls tolerance for noise.

4. Experiments

To test the efficiency of our algorithm, we conducted a
series of computer experiments on n-state ring world
(n = 5, 8) (Tanner & Sutton, 2005b). Figure 2 illus-
trates 8-state ring world. There are two observations,
0 or 1, and two actions, L and R.

Since the ring worlds contains only deterministic state
transitions and observations, we also tested our al-
gorithm on some standard probabilistic POMDP en-
vironments taken from repository (Cassandra, 1999).
Among them, environments with one-bit observation
are used, and adapted to non-reward situation (we
followed a previous work that describe details; Mc-

Cracken, 2005).

We generated a sequence of experience by a uni-
form random policy and applied our algorithm on-
line. Through all experiments we used ρ1 = 0.99,
ρ2 = 0.999, αD = 0.2, λ = 0.9, θ1 = 0.0045, and
θ2 = 0.0005. α is initialized with 0.1, and after 800,000
steps, α is halved with every 100,000 step. We mea-
sured the error of the prediction for the selected action,
compared to the oracle (observation probability calcu-
lated from the structure of the environment), and the
mean squared errors for every 10,000 steps are plotted.

Figures 3(a) and 3(b) are the results in 5- and 8-state
ring worlds. We can see that the number of nodes
in the TD network increases as a result of node ex-
pansion until the prediction error decreases. This in-
dicates that nodes in the TD-networks are expanded
only when it is required.

We made additional tests with various parameters θ1

and θ2 on the 8-state ring world (Table 1). We found
that θ2 affects the final number of nodes. With larger
θ2, algorithm failed to make a required node expan-
sion; with smaller θ2, the algorithm made some spuri-
ous node expansions (though the learning was success-
ful). On the other hand, θ1 mainly affects the learning
time, but less related to the number of nodes.

Figures 3(c) to 3(f) show the results of our algorithm
in other well-known POMDP environments. Our algo-
rithm has successfully learned predictions in all cases.
However, we found that the initial form of the TD net-
work without node expansion can learn equally well
(compared to the case started with a large TD net-
work, which is mechanically generated by expanding
all nodes), due to the high generalization capacity of
TD-network with sigmoid function. Thus these exper-
iments are not helpful for evaluating our discovery al-
gorithm. However, we see that some node expansions
are occurred in these experiments. This indicates that
our algorithm sometimes makes spurious node expan-
sions, especially in these probabilistic environments.

We also evaluated the criteria we selected in terms of
the discovered question network for the 8-state ring
world. Figure 4 compares the mean square errors and
the number of nodes in the discovered network with
various settings of criteria (in these experiments α is
kept constant to 0.1). Although the prediction error
approaches to zero on all conditions, increase in the
number of nodes is observed if any one of the criteria
is removed.

Figure 5 further examines the difference of the discov-
ered TD network. In the TD network discovered using
all of the criteria (Figure 5(a)), all the expanded nodes

On-line Discovery of Temporal-Difference Networks

1×10-7

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

1×10-1

0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
ea

n
sq

ua
re

d
er

ro
r

no

de
s

Mean squared error
Mean squared error w/o expansion
Mean squared error w/ max nodes

nodes
half learning rate

1×10-7

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

1×10-1

0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
ea

n
sq

ua
re

d
er

ro
r

no

de
s

Mean squared error
Mean squared error w/o expansion
Mean squared error w/ max nodes

nodes
half learning rate

(a) 5-state ring world (b) 8-state ring world

1×10-7

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

1×10-1

0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
ea

n
sq

ua
re

d
er

ro
r

no

de
s

Mean squared error
Mean squared error w/o expansion
Mean squared error w/ max nodes

nodes
half learning rate

1×10-7

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

1×10-1

0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
ea

n
sq

ua
re

d
er

ro
r

no

de
s

Mean squared error
Mean squared error w/o expansion
Mean squared error w/ max nodes

nodes
half learning rate

(c) Float-Reset (d) Paint

1×10-7

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

1×10-1

0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
ea

n
sq

ua
re

d
er

ro
r

no

de
s

Mean squared error
Mean squared error w/o expansion
Mean squared error w/ max nodes

nodes
half learning rate

1×10-7

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

1×10-1

0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
ea

n
sq

ua
re

d
er

ro
r

no

de
s

Mean squared error
Mean squared error w/o expansion
Mean squared error w/ max nodes

nodes
half learning rate

(e) Tiger (f) Network

Figure 3. Results of experiments. X-axis shows time steps (× 105)

are independent of each other, thus the discovered net-
work is the best network for the 8-state ring world that
can be discovered by our algorithm. This shows clear
contrast to TD network discovered solely by depen-
dency detection network, shown in Figure 5(b). Al-
though this network has correctly learned to predict
the 8-state ring world, some spurious node expansions
are observed. This indicates that the dependency de-
tection network is not powerful enough to choose the
right node to be expanded, and shows importance of
other criteria in our algorithm.

5. Discussion

The algorithm we have presented has some limitations.
It seems unavoidable because the algorithm has to
make inference using an incomplete question network.
In this section, we discuss some of the limitations that
arose in our approach.

5.1. Deep Dependency

In our algorithm, Criterion 3 (requires more explana-
tion) are devoted for distinguishing apparently unpre-
dictable events, caused by an incomplete question net-

On-line Discovery of Temporal-Difference Networks

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

0 2 4 6 8 10 12 14

M
ea

n
sq

ua
re

d
er

ro
r

With all criteria
Disable "well-knownness 1" (eq.15)
Disable "well-knownness 2" (eq.16)

Disable "independence"
Disable "requiring explanation"

 0

 10

 20

 30

 40

 50

 60

0 2 4 6 8 10 12 14

no

de
s

With all criteria
Disable "well-knownness 1" (eq.15)
Disable "well-knownness 2" (eq.16)

Disable "independence"
Disable "requiring explanation"

(a) Mean squared error (b) Number of nodes

Figure 4. Results of experiments (average of 30 trials) on 8-state ring world with disabled criteria.

L R

86 85

L RL R

197 351

L RL R

429 515

R

L R

R

L R

529

L RL R

L R

(a) With all criteria

86 85

L R

133 133

L RL R

137

L RL R

271

L RL R

L R

370 370

L R L R

L R

142 142

L R L R L R

281

L R

L RL R

360

405

(b) Without criterion “requires further explanation”

Figure 5. An example of discovered TD network for 8-state
ring world. The number in a node denotes the time the
node is expanded (×103).

work, from inherently random events. However, we
can imagine cases in which this criterion does not work
well, especially when the observation depends only on
the actions several steps before.

As an example, suppose an n-step delay world: A =

O = {0, 1}, and the agent observes its own action with
n-step delay. If the agent chooses actions randomly,
then the observation is also random string. Moreover,
unless the depth of the question network reaches n, the
agent can predict nothing. For n ≥ 2, the nodes in a
question network are likely to fail satisfying Criterion
3, and as a result, the algorithm fails to achieve the
correct test set for the environment.

A partial solution may be to introduce active learning
(planned exploration). In the example above, if the
agent could adopt some biased choice of actions for a
while, one would observe informative result that might
satisfy Criterion 3.

5.2. Selection of Expanding Node

The algorithm always expands the node that requires
more explanation, but it is possible that the node is not
the best one to be expanded. The algorithm depends
on an assumption that, if there is a better node to be
expanded, the node also satisfies the expansion criteria
sooner or later. We need to work for some theoretical
support for the assumption. However, if the assump-
tion is correct, the algorithm may perform some spuri-
ous expansion due to its distributed-processing nature.
A complete solution would require either centralized
processing or node shrinking.

5.3. Parameter Selection

The algorithm depends on a number of parameters.
Our selection of parameters seems working for the
tested problems, but not guaranteed for others. In
particular, the algorithm is sensitive to θ2, a threshold
value used in Criterion 3 for distinguishing apparently
unpredictable events from inherently random events.
Due to the limitation of our approach, it seems impos-
sible to provide a universal parameter set for producing
the minimum network for any environment; a better
solution would be to use lower thresholds to overgen-

On-line Discovery of Temporal-Difference Networks

erate the question network and shrink it afterwards.

5.4. Handling Wider Observation

In this paper, we considered only the simple case with
one observation bit (l = 1). When l ≥ 2, it would
be necessary to consider sets of nodes that share a
common action conditions and associated to different
observations, and to expand all nodes in a set simul-
taneously. In addition, it is necessary to extend our
criteria have to handle the node sets.

6. Related Work

McCracken and Bowling (2006) proposes the on-line
discovery and learning algorithm for predictive state
representation. However, their algorithm has to keep
substantially long (in their example, 1000 steps) his-
tory in memory and calculate linear independency, and
requires quite complex efforts to normalize the proba-
bility in their representation. On the other hand, our
algorithm requires only a small amount of memory (up
to the size required for eligibility traces) and, thanks to
the sigmoidal function used in the TD network, no ef-
fort is required to normalize the result. We argue that
these differences cause larger difference in calculation
costs in a complex environment.

7. Summary

We presented an algorithm for on-line, incremental dis-
covery of temporal-difference (TD) networks. The key
contribution is the establishment of criteria to expand
a leaf node in TD network: the algorithm expands a
node when the node is well-known, independent, and
has a prediction error that requires further explana-
tion. Since none of these criteria requires centralized
calculation operations, they can be computed in a par-
allel and distributed manner. Through computer ex-
periments on n-state ring worlds, we demonstrated the
empirical effectiveness of our algorithm.

Among the future work the most important is to evalu-
ate our algorithm on various environments for compar-
ison with other discovery algorithms. Agent planning
with TD network should be also studied to combine
with our algorithm for developing an agent that ex-
plores environments (Bowling et al., 2006).

Acknowledgments

I’d like to thank Prof. Steven Kraines for his kind help.
This research is partially supported by the MEXT
Grant-in-Aid for Young Scientists (B) (20700126).

References

Bowling, M., McCracken, P., James, M., Neufeld, J.,
& Wilkinson, D. (2006). Learning predictive state
representations using non-blind policies. In Proc. of
ICML ’06 (pp. 129–136). ACM Press.

Cassandra, A. (1999). Tony’s POMDP file repository
page. URL http://www.cs.brown.edu/research/ai/
pomdp/examples/index.html.

Jaeger, H. (2000). Observable operator models for dis-
crete stochastic time series. Neural Computation,
12, 1371–1398.

James, M. R., & Singh, S. (2004). Learning and discov-
ery of predictive state representations in dynamical
systems with reset. Proc. of ICML’04 (p. 53). ACM
Press.

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Pre-
dictive representations of state. In Advances in neu-
ral information processing systems 14, 1555–1561.
MIT Press.

McCracken, P. (2005). An online algorithm for discov-
ery and learning of predictive state representations.
Master’s thesis, University of Alberta.

McCracken, P., & Bowling, M. (2006). Online discov-
ery and learning of predictive state representations.
In Advances in neural information processing sys-
tems 18, 875–882. MIT Press.

Rosencrantz, M., Gordon, G., & Thrun, S. (2004).
Learning low dimensional predictive representa-
tions. Proc. of ICML ’04 (p. 88). ACM Press.

Rudary, M. R., & Singh, S. (2004). A nonlinear pre-
dictive state representation. In Advances in neural
information processing systems 16. MIT Press.

Sutton, R. S., & Tanner, B. (2005). Temporal-
difference networks. In Advances in neural informa-
tion processing systems 17, 1377–1384. MIT Press.

Tanner, B., & Sutton, R. S. (2005a). TD(λ) networks:
temporal-difference networks with eligibility traces.
Proc. of ICML’05 (pp. 888–895). ACM Press.

Tanner, B., & Sutton, R. S. (2005b). Temporal-
difference networks with history. In Proc. of IJ-
CAI’05, 865–870.

Wolfe, B., James, M. R., & Singh, S. (2005). Learning
predictive state representations in dynamical sys-
tems without reset. Proc. of ICML’05 (pp. 980–987).
ACM Press.

