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Abstract—A non-binary analog-to-digital converter (ADC)
based on β-expansion, called β-encoder, is so far reported to
achieve robustness against large process variation and wide
environment change. Quantization error of β-encoder is not
uniformly distributed, which makes the mean squared error
(MSE) evaluation difficult. An analysis method for giving the
upper bound of MSE of the quantization error is provided.
Signal-to-noise-ratio (SNR) is also evaluated and the result is
effective for designing β-encoders⋆.

Index Terms—Analog-to-Digital and Digital-to-Analog convert-
ers, quantization error, β-map, mean squared error.

I. INTRODUCTION

Robust analog-to-digital converter (ADC) architecture is
desirable for not only nowadays mixed signal LSIs but also
next generation CMOS technology, to meet the requirement
of ADC performances of high sampling frequency, high reso-
lution, small chip area (the same word as low cost), and low
power consumption. In the conventional binary architecture,
the linearity of ADC is very sensitive to the accuracy of
analog components. Therefore, high-gain wideband amplifiers
as well as high accuracy matched devices, such as transistors,
capacitors, and resistors, are necessary to satisfy the required
ADC linearity, leading to large chip area and high power
consumption.

A recently proposed architecture, called β-encoder [1], is
a non-binary ADC based on β-expansion, which has a self-
correction property for fluctuations of amplifier factor β and
quantizer threshold ν. It is shown [2] that the circuit based on
the approach (Fig. 1) has robustness that tolerates the conver-
sion errors caused by finite gain of amplifier and mismatches
of the devices, and that the proposed β-estimation algorithm
eliminates the need for any digital calibration technique. Just
by adding a simple conversion sequence with the effective
radix-value β, we can realize a reliability-enhanced ADC
with greatly relaxed power and area penalties for high-gain
amplifier and high-accuracy circuit elements.

From a viewpoint of circuit design, it is important to give
a theoretical evaluation of mean squared error (MSE) and
signal-to-noise ratio (SNR), which guarantee the accuracy and
linearity of β-encoders. The only known theoretical results
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Fig. 1: Simplified block diagram of the β-encoder (cyclic ADC based
on β-expansion). In this paper we use the ordinary β-map,
which means that the full-scale width s is set to 1

β−1
.

about the quality of β-encoder is its maximum quantization
error [1], [3]. The purpose of this paper is to make a theoretical
derivation of simple and accurate MSE and SNR evaluation.

The fact that the β-expansion map Cβ,ν(x) is locally
eventually onto [ν−1, ν] implies that we may evaluate MSE by
assuming that CL

β,ν(X) is uniformly distributed in the interval,
where X is a random variable for x. Such an assumption
makes the MSE to be 1

12β
−2L, where L is the number of bits1.

Computer simulation, however, shows that the numerically
calculated MSE is deviated from such an evaluation and is
not sufficient to guarantee the quality of a β-encoder.

The trajectory of Ci
β,ν(x) for i = 0, 1, . . . with x ∈ [ν − 1,

ν] follows the Parry’s invariant density [4]. Hence, it seems
a good way to evaluate MSE based on the Parry’s density.
However, this has two difficulties. One is that the main target
of L is from 12 to 16 in real applications. Such a size of L is
not sufficiently large for the density function of quantization
error to converge to the invariant measure. The other is that
Parry’s invariant density is expressed as an infinite sum of
±β−ns, which complicates the MSE evaluation based on the
direct application of Parry’s density. This situation motivated
us to develop a new MSE analysis method.

We provide a method for analyzing the MSE of β-encoder
by introducing a notion of segments, i.e., linear pieces within
the L-nested β-map. Such a method, called level j truncation,
enables us to give a tight upper bound of MSE. Using this
upper bound, and restricting our attention to the cautious map
with ν = β

2(β−1) , we prove that the MSE of such β-encoder is
smaller than 1

12β
−2L if 1+

√
5

2 ≤ β ≤ 2 and 5 ≤ L ≤ 18. Such
a sufficient condition is effective for designing β-encoders. We

1In case of scale-adjusted β-map with a full-scale s, MSE is multiplied by
s2(β − 1)2. For ordinary β-map, s = 1

β−1
.
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Fig. 2: Ordinary β-map Cβ,ν(x).
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Fig. 3: Segments in the map CL
β,ν . With L = 4, there are 14 seg-

ments indexed by b ∈ {0000, . . . , 1111}. Note that segments
J0111 and J1110 have zero length and were not drawn. The
lower and upper ends of each segment are given as lb and
ub, respectively.

also provide evaluation of SNR as well.

II. PRELIMINARIES

A β-map Cβ,ν :
[
0, 1

β−1

]
→

[
0, 1

β−1

]
, illustrated in Fig. 2,

is defined by

Cβ,ν(x) =

{
βx βx < ν,
βx− 1 βx ≥ ν,

(1)

where 1 < β ≤ 2 is an amplification factor, and 1 ≤ ν ≤
1

β−1 is a threshold. Its associated bit sequence is defined
as bi,Cβ,ν

= 0 if Ci−1
β,ν (x) < β−1ν and bi,Cβ,ν

= 1 if
Ci−1

β,ν (x) ≥ β−1ν. A decoder reconstructs a signal x from the
bit sequence. The decoded value is equal to the midpoint of
the subinterval [3], i.e., x̂L =

∑L
i=1 bi,Cβ,ν

β−i+
(
ν − 1

2

)
β−L.

Then the quantization error is expressed as

|x− x̂L| = β−L
∣∣∣CL

β,ν(x)−
(
ν − 1

2

)∣∣∣. (2)

The map is called greedy-, lazy-, and cautious-expansion,
respectively, if ν = 1, ν = 1

β−1 , and 1 < ν < 1
β−1 .

The β-encoder is robust against a fluctuation of the thresh-
old under the assumption ν ∈ [1, 1

β−1 ] and it can work for
unknown ν properly [1]. In order to analyze the MSE of a β-
encoder, however, we suppose ν is fixed to a known value, as

well as we have to assume some distribution function for the
input signal x. Uniform distribution on the full-scale, [0, 1

β−1 ]
is assumed in this paper.

Then we define the MSE as follows:

MSE
(
Cβ,ν , L

)
=

∫ 1
β−1

0

|x− x̂L|2 1
1

β−1

dx

= (β − 1)β−2L

∫ 1
β−1

0

(
CL

β,ν(x)−
(
ν − 1

2

))2

dx (3)

We assume the input is uniformly distributed on the full-scale
[0, 1

β−1 ], but the following analysis can be applied to other
distributions with a slight modification.

III. ANALYSIS OF MSE

In this paper, we propose a new method of analyzing CL
β,ν

based on segments (Fig. 3). CL
β,ν consists of at most 2L linear

segments, indexed by bit sequence b = b1 · · · bL. We denote
the location of each segment of CL

β,ν by Jb = [lb, ub], where
lb and ub are the lower and upper ends of the projection of
the segment on y-axis, respectively. Segments can be used to
calculate MSE by changing variable in Eq. (3):

MSE
(
Cβ,ν , L

)
= (β − 1)β−2L

∑
b∈{0,1}L

∫ ub

lb

(
y −

(
ν − 1

2

))2 dy

βL

= (β − 1)β−3L
∑

b∈{0,1}L

f(Jb), (4)

where f(Jb) =
1
3 (ub − (ν − 1

2 ))
3 − 1

3 (lb − (ν − 1
2 ))

3.
Equation (4) implies that

∑
b∈{0,1}L β−L1[lb,ub] is con-

sidered as the Lth iteration of the Perron-Frobenius operator
corresponding to Cβ,ν with respect to the initial distribution
(β − 1)1[0, 1

β−1 ]
, where 1[a,b](x) is 1 if a ≤ x ≤ b and 0 oth-

erwise. Such a distribution function converges to h(x−ν+1)
as L → ∞, where h(x) is the Parry’s invariant density [4]
under the (β, α)-transformation Tβ,α: [0, 1) 7→ [0, 1) defined
by Tβ,α = βx+ α mod 1, β ≥ 1 and 0 ≤ α ≤ 1.

Figure 3 shows an example of fourth iterated cautious β
map (i.e., ν = β

2(β−1) ). It should be noted that two segments
indexed by 0111 and 1000 do not appear. This phenomenon
occurs if segments labelled by 011 and 100 in L = 3 are
included in [0, ν

β ] and [ νβ ,
1

β−1 ], respectively. The condition
whether a segment disappears or not depends on the value
of β and L. Such a situation makes the analysis of MSE
difficult. We, however, provide a method to perform such kind
of calculation effectively by analyzing the pattern of lb and ub

rigorously, as shown in the next section. The analysis shows
that the summation in Eq. (4) with at most 2L terms can be
reduced to a summation with only 2L terms.

A. Exact MSE for the uniform distribution

We denote a vector of segments in Ci
β,ν by

SEG(i) = ⟨
2i︷ ︸︸ ︷

J 0···0︸︷︷︸
i

, . . . , J1···1 ⟩. (5)
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Let the initial segment (i = 0) be the full-scale of the β-
map, i.e., SEG(0) = ⟨[0, 1

β−1 ]⟩. For i = 1, We can derive.
SEG(1) = ⟨J0, J1⟩ = ⟨[0, ν], [ν−1, 1

β−1 ]⟩. For general i ≥ 2,
the exact set of segments are calculated by iteration:

Proposition 3.1: We can compute SEG(i+1) from SEG(i):

lb0 = min(ν, βlb) , lb1 = max(ν − 1, βlb − 1) ,

ub0 = min(ν, βub) , ub1 = max(ν − 1, βub − 1) .

Note that, the length of a segment |Jb| = ub−lb may become
zero and disappear from the graph of CL

β,ν(x). Such a segment
has no effect on the evaluation of MSE, because if |Jb| = 0,
then f(Jb) = 0 and |Jb0| = |Jb1| = 0.

The vector may contain several non-zero-length segments
that have the identical location. Indeed, we can show the
following property:

Lemma 3.2: Let us denote the number of distinct, non-zero-
length segment locations in SEG(i) as #SEG(i). Then

#SEG(i+ 1) ≤ #SEG(i) + 2. (6)

Consequently, #SEG(1) = 2 gives #SEG(i) ≤ 2i.
The proof is omitted for lack of space.

Thus we can give a numerical index for the possible
locations of segments, Jk = [lk, uk] (k ≥ 0), such that
Jb = Jkb

, where kb ∈ {0, . . . , 2i − 1} for b ∈ {0, 1}i. This
means that, to calculate the MSE for Lth iteration, we do
not have to compute locations of 2L segments, but only need
counting the number n(L)

k of segments on the kth location Jk
for k = 0, . . . , 2L− 1. The counting can be done from some
recurrence formula with respect to L by use of the property
of n(L)

k . Thus we can derive MSE from Eq. (4):

MSE(Cβ,ν , L) = (β − 1)β−3L
2L−1∑
k=0

n
(L)
k f(Jk). (7)

B. Truncating enumeration of distinct segments

Eq. (7) gives the exact MSE. The number of segments n(L)
k ,

however, changes sensitively by the values of β and ν. This
fact prevents us to analyze the MSE, because fluctuation of β
is allowed in β-encoders. We restrict the number of distinct
segments up to 2j, where j < L. Such a method, called level
j truncation, helps us to analyse the MSE for a range of β
and ν.

We considered the segments that escaped from the consid-
ered locations as “lost.” Specifically, the set of the indices of
lost segments at ith iteration at the level j truncation is as
follows: For b = b1 · · · bi ∈ {0, 1}i,

LOST(i, j) = {b ∈ {0, 1}i : ∃i′ ≤ i s.t. kb1···bi′ ≥ 2j}. (8)

Thus we consider the number of non-lost segments for k =
0, . . . , 2j − 1 as well as the number of lost segments:

n
(i,j)
k = #{b|b /∈ LOST(i, j), Jb = Jk}, (9)

n
(i,j)
lost = #LOST(i, j). (10)

This truncation method has the following advantages:

• Given β, ν and j, we can derive some recurrence formula
for n

(i,j)
k and n

(i,j)
lost with respect to i considering only

2j + 1 variables.
• Approximated n

(i,j)
k values are constant for a range of β

and ν.
Let hlost be the average of the length of segments belonging

to the set of lost segments, LOST(L, j), defined by

hlost =

∑
b∈LOST(L,j)(|Jb|)

n
(L,j)
lost

=

βL

β−1 −
∑2j−1

k=0 n
(L,j)
k |Jk|

n
(L,j)
lost

for n(L,j)
lost ̸= 0. Jensen’s inequality gives∑

b∈LOST(L,j)

f(Jb) ≤ n
(L,j)
lost g (hlost) , (11)

where

g(x) =

{ 1
16x+ 1

48 (x ≥ 1
4 ),

1
3

(
x− 1

2

)3
+ 1

24 (x < 1
4 ),

is a convex function and f(Jb) ≤ g(|Jb|) is satisfied for all
lb ≥ ν − 1 and ub ≤ ν. Then, we give an upper bound using
the jth level truncation as follows:

MSE (Cβ,ν , L)

≤ (β − 1)β−3L

(2j−1∑
k=0

n
(L,j)
k f(Jk) + n

(L,j)
lost g(hlost)

)
. (12)

This bound becomes tighter when j goes closer to L. When
j = L, n(L,j)

lost becomes 0 and the bound becomes equivalent
to Eq. (7).

C. A simple upper bound for MSE

Hereafter, we assume a cautious β-expansion with ν =
β

2(β−1) . The MSE is deviated from the intuitive expression
1
12β

−2L and can be greater than this value for some β and
L. Using Inequality (12) with level 8 truncation, we give a
sufficient condition for the MSE to be less than this value, as
follows:

Theorem 3.3: For 1+
√
5

2 ≤ β ≤ 2 and 5 ≤ L ≤ 18,

MSE
(
Cβ, β

2(β−1)
, L

)
≤ 1

12
β−2L. (13)

Note that the ranges of β and L are just a sufficient condition
for Inequality (13). Simulation results suggest that the same
inequality holds for other cases, such as L > 18.

IV. SNR OF β-ENCODERS

We have analyzed the MSE of β-encoders. However, signal-
to-noise ratio (SNR) is used as a criterion for the quality of
ADCs more often than MSE. We can roughly evaluate the
SNR from the MSE.

Suppose a sinusoidal waveform of a certain frequency fin
is input to the ADC. Such a signal is sampled and quantized.
SNR is defined, in a frequency domain, as a ratio of the energy
of the signal component at frequency fin to the total energy
of quantization noise components. The range of β-encoder is
[0, 1

β−1 ]. Then, the energy of the input signal for one period is
(β−1)−2/8. The distribution of the sampled sinusoidal waves
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Fig. 4: Comparison of MSE with simulation results, L = 18.
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Fig. 5: Comparison of MSE ratio (with simple bound = 1), L = 18.

is not uniform, but we approximate it as uniform. Then the
noise component N is approximated by the MSE. We obtain

SNR = 10 log10
S

N
≈ 10 log10

(β − 1)−2/8

MSE(Cβ,ν , L)
(dB). (14)

Using Eq. (13), we get an approximated lower bound of SNR:

SNR ⪆ 20L log10 β − 20 log10(β − 1) + 1.76 (dB). (15)

For a scale-adjusted β map with its scale s, both signal and
noise components are multiplied by s2(β − 1)2. Thus, Eqs.
(14) and (15) holds for any s.

V. SIMULATION RESULTS

Figures 4 and 5 show the comparison of the derived MSE
values and the results of numerical simulation. Since the
simulation results match perfectly to the exact MSE value
(Eq. (7)), they are not distinguishable in the plot. The MSE
based on level 8 truncation is slightly worse than them, but for
the range 1+

√
5

2 ≤ β < 2, it is better than the simple bound
(Eq. (13)).

Figures 6 and 7 show the comparison of the SNR values
with simulation using sinusoidal wave input. The SNR calcu-
lated from the simulation is slightly worse than SNR calculated
from the exact MSE and Eq. (14), but it is better than the
simple bound (Eq. (15)) for 1+

√
5

2 < β < 2. Moreover, the
difference between the simulation and the simple bound is less
than 0.8 dB. This means that Eq. (15) can be used as a good
approximation of the ideal SNR value of the β-encoder.
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Fig. 6: Comparison of SNR (dB) with simulation results, L = 18.
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VI. CONCLUDING REMARKS

A method providing a rigorous analysis of the MSE of
ADCs based on β-map was presented. Using this method, we
gave a sufficient condition for MSE to be less than 1

12β
−2L.

Such an MSE analysis guarantees the quality of β-encoders
and leads to a useful SNR evaluation. Uniform distribution on
the full-scale [0, 1

β−1 ] for the input value x has been assumed
in this paper. However, the proposed analysis method can be
applied to other distribution functions, too. This topic as well
as the proofs of Lemma 3.2 and Theorem 3.3 will be given in
a separate paper.
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