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Abstract 
This paper shows how the computational theory of language understanding can affect the design of 
language-understanding neural networks.   We propose some basic properties of a computational the-
ory of language understanding, and we show that the generalizability requirement in the property 
forces us to face with the feature binding problem.  Based on the advantage of the temporal-coding, we 
discuss the necessity of global phase control for language understanding.  We also show simulation 
results with a simple neural network model for sentence understanding on the bases of the theory.  
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Introduction 
Language facility is one of the most uncharted fields in the 
brain.  One of the reasons is the limitation for measure-
ment method for brain activities during language proc-
essing.  Since only humans can use languages, we cannot 
resort to single neuronal recording in the living brain. 

An effective research methodology for such a field is 
the approach from the viewpoint of computational neuro-
science (Marr, 1982).  When a computational theory for 
the problem domain is given, we can suggest representa-
tions and algorithms as an information processing problem.  
We can treat these representations and algorithms as a 
hypothesis of the process in the brain, to help investigation 
of the mechanism in the brain. 

We need a computational theory for language under-
standing to take this approach.  However, the mainstream 
of computational theories for languages, such as Chom-
sky’s theory (Chomsky, 1965), has concerned only gram-
mars.  Based on the grammar theory, we will be able to 
obtain representations and algorithms suitable for gram-
matical decision; we need, however, another theory, which 
concerns understanding of language, to elucidate the 
mechanism of understanding. 

This paper proposes some basic properties in the com-
putational theory of language understanding, and shows an 
impact of the theory on artificial neural network models.  
Especially, we discuss the advantage of temporal coding, 
and discuss the necessity of global phase control for 
language understanding.  We also show a simple neural 
network model for sentence understanding on the basis of 
the theory. 

In Section 2, the sentence-understanding theory is out-

lined.  Then, in Section 3, we explain feature binding 
problem and possible solutions, and point out the necessity 
of the global phase control, which is called phase 
arbitration.  Finally, in Section 4, we show our simulation 
model based on the theory, and discuss the future work. 

Language-Understanding Theory 
Although it is almost impossible to define what is lan-
guage understanding, we can say that some properties 
must be satisfied in sentence understanding.  By enumer-
ating the conditions, we outline the theory of language 
understanding. 

When a person understands a sentence, his/her brain is 
activated in some pattern.  For example, if the sentence 
describes some feeling, a part of the pattern will match to 
the activity caused by experiencing the feeling.  In other 
words, the matching part of pattern provides meaning of 
the sentence in a form of association to the feeing.  We call 
this part of pattern semantic representation. 

In most cases, a meaning contains information of rela-
tions between entities or concepts.  For example, a mean-
ing of a phrase ‘a white hat’ contains a relation between a 
concept ‘white’ and an entity ‘a hat’.  We call this relation 
binding, borrowing the term from logic programming. 

Although semantic representation may be unique for 
each person, it should have some common feature in order 
to be regarded as a part of sentence-understanding process, 
including the following: 
! Semantic representation is dynamic, that is, available 

immediately after understanding.  Although static 
memory mechanism (such as change of wiring) may 
concern background knowledge of semantics, it is too 
slow to be used in the following processes.  Semantic 
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Figure 2: Synchrony-based Coding.
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presentation should be on more dynamic and flexi-
e medium, such as change of electric potential and 
nctional connectivity.  
mantic representation is memorable in the brain.  

amely, the brain does not understand a sentence 
ithout keeping the semantic representation for a 
rtain period. 
mantic representation is generalizable, in a sense 
at mapping from a sentence to semantic representa-
n can be learned by the brain.  Especially, the rep-

sentation must be able to hold unencountered bind-
gs; otherwise the language losts.its capability to 
nvey an idea. 
ially the last point constrains possible codings of se-
 representation which we pursue in the next section. 
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Complexity in Memory Coding 
Necessity of Complexity 
eneralizability requirement forces us to face with 
e binding problem (von Malsburg, 1981), or super-
n catastrophe (Fujii et al, 1996), as illustrated in 
 1.  Binding of an attribute “lover” and a value 

” is represented as simultaneous activities of “lover” 
John.”  However, when we try to represent two 
g relations, “John” = “lover” and “Mary” = “be-
” the activity becomes a mixture of “John,” “Mary,” 
,” and “beloved,” which is indistinguishable from 
r set of binding “Mary” = “lover” and “John” = 
ed.”  Since a person rarely makes a mistake of dy-
 binding, some inherent mechanism that solves this 
m should exist. 
seems that simple recurrent networks do not have 

such a mechanism.  A context layer, which corresponds to 
a memory mechanism in a simple recurrent network, falls 
into the problem if it represents the meaning “John loves 
Mary” in an additive way1.  Thus, we can say that some 
sort of complexity is necessary to be incorporated into the 
coding of memory mechanism, in order to represent 
bindings. 

Possible Source of Complexity 
Here we consider three possible sources of complexity to 
represent bindings: space, intensity, and time.  Although 
the actual brain may have combination of them, we choose 
which should be the first one to be implemented. 

The first candidate, spatial complexity, is to use more 
neurons and synapses to represent bindings.  The easiest 
example is to introduce a neuron for each possible binding, 
such as ‘John-lover’ neuron, ‘Mary-beloved’ neuron and 
so on.  However, with the generalizability requirement, 
every possible binding must have its associated neuron, 
which is not practical as a model of the brain  

The second candidate, which we name intensive com-
plexity, uses intensity (strength) of signals to store binding 
information.  Sakurai (2001) pointed out that a neuron with 
infinite precision of signal levels can store arbitrary depth 
of nested information; such a neuron would be able to store 
binding information.  However, he also proved that a 
sigmoid function neuron is unable to retrieve arbitrary 
depth of information, even with infinite precision.  
Moreover, actual neurons in the brain have only finite 

 
1 This discussion is true on any coding with additiveness, such as 
distributed coding, although Figure 1 is illustrated with four 
‘grandmother’ neurons for simplicity. 



precision of signal levels, which may be represented by the 
number of pulses and population rates in a neuron group.  
Here we decide not to pursue this approach. 

The last candidate, temporal complexity, uses temporal 
position of signals to represent binding information.  This 
seems to violate memorability of semantic representation, 
since temporally transient activities of neurons cannot be 
kept over time.  However, periodic activities such as os-
cillation can stay for a certain time on memory.  Moreover, 
an integrate-and-fire neuron can detect coincidence of 
phases (temporal positions of periodic activity) among 
multiple neurons with high precision (Singer, 1994).  It is 
suggested that temporal correlation of activities may be 
utilized as a coding in the brain in order to avoid feature 
binding problem (Fujii et al. 1996).  From these arguments, 
we chose the temporal complexity for the first complexity 
to be implemented. 

Actually, there are some implementations of the tem-
poral complexity in the past studies.  One of the simplest 
implementations of temporal coding on the artificial neu-
ral network framework is a synchrony-based coding used 
in SHRUTI system (Shastri and Ajjanagadde, 1993).  In 
their coding, a neuron oscillating by itself denotes either an 
attribute or a value, and synchronization of the oscillation 
denotes binding between them (Figure 2).   

Henderson implemented a connectionist parser based 
on this coding (Henderson, 1994) and succeeded to make a 
neural network learn to parse by back-propagation through 
time (Henderson and Lane, 1998).  His architecture, Sim-
ple Synchrony Network, is generally an extension of El-
man’s Network by the synchrony-based coding.  He notes 
that the limitation of synchrony-based coding, e.g. ca-
pacity constraint caused by lack of time-slot, can predict 
human unacceptability of some sentences.   
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Phase Arbitration 
Although a network with temporal complexity looks quite 
promising, we found that our semantic representation 
cannot be applied directly to such a network:  We have to 
answer how new items are memorized, and how unnec-
essary items are forgotten.  This is because phases are 
limited resource, and an unused phase has to be allocated 
for each new binding to be memorized.   

Current studies with temporal coding solve this prob-
lem artificially.  The SHRUTI system determines every 
pulse phase by an artificial signal.  Henderson’s parser 
learns to use an unused phase for a new item, but it is based 
on the teacher signals in back-propagation.  Moreover, 
both systems cannot forget items unless the systems are 
reset to original state.  However, in our scheme, we cannot 
take such an artificial solution.   

In this study, we name the allocation of an unused 
phase as phase arbitration, and pursue the way to imple-
ment phase arbitration on temporal-coding neural network.  
First, we have to determine whether a neural network can 
acquire phase arbitration through learning, or the neural 
network needs some inherent mechanism for phase arbi-
tration.  In the next section, we performed empirical ex-
periments trying to simulate a neural network that learns 
phase arbitration. 

Phase arbitration mechanisms are classified into local 
and global mechanisms.  In this section, these two 
possibilities are compared and discus

A local phase arbitration mechanism does not use any 
global signal to allocate a phase, and controls phase by 
only mutual connection between memory neurons.  For 
example, excitatory and inhibitory connections from 
neuron A to neuron B can promote and suppress oscillation 
of neuron B in a specific phase difference from neuron A.  
However, when many activities are overlaid in an additive 
representation, such connections will induce or prohibit 
activity of unrelated neurons.  It seems difficult to arbitrate 
phases only by local mechanisms. 

On the other hand, a global phase arbitration mecha-
nism (Makino, 2001) uses some signal that represents 
global phase of a network2.  Each memory neuron uses this 
global signal to determine its oscillation phase.  After that, 
a phase of either global signal or memory neuron shifts so 
that the global signal points to a new unused phase.  In this 
way, the new items are stored on unused phases in order. 

It should be noted that some mechanisms studied in 
brain sciences are similar to global phase arbitration.  
O’Keefe and Recce (1993) report that phase precession 
occurs in a rat hippocampus.  Place-coding cells, which 
correspond to the current position of the rat, first become 
active in a specific phase to the Theta oscillation, and then 
shift their phase gradually to make phase difference to the 
next activation of other place-coding cells.  This mecha-
nism, which is supposed to provide short-term episodic 
memory, can also be regarded as a global phase arbitration 
mechanism using Theta oscillation as a global signal.  It is 
possible that the phase arbitration for language is provided 
in such an episodic memory mechanism, since some re-
search on neurolinguistics (Just and Carpenter, 1992) 
suggests the relation between sentence understanding and 
short-term memory capacity. 

Simulation Model 
We developed a simulation model of artificial neural 
network, which satisfies the properties of the computa-
tional theory of language understanding. We adapted a 
leaky-integrate-and-fire neuron model and continuous 
simulation time. 

Figure 3 shows the architecture of the simulation model.  
As a memory neuron with global phase arbitration, we 
adapted a mathematical model of phase precession (Lis-
man and Idiart, 1995).  Two associative mappings are at-
tached to the memory neurons: Autoassociative mapping 
associates words to the part-of-speech information, while 
heretoassociative mapping correlates two consecutive 
memory items, through two different delays from memory 
neuron, into a new memory item, which may contain 
bindings.  Figure 4 illustrates the process of the two asso-
ciative memories. For detail, please refer (Makino, 2002). 

Figure 5 shows the actual result of the simulation on 
Punnets (Makino, 2002b).  When a signal corresponding to 
the word Mary is input to the system (the sign “+Mary”), 
the associated neuron is activated along corresponding 
part-of-speech neuron (<propn> = proper noun).   Because 
of the Lisman’s memory model, these activities sustain 
over oscillations, and it uses a different phase from the 
activity corresponding to the next signal (“+loves”).  At 

 
2 This does not imply that every neuron is governed by some 
control center.  Every neuron may control itself using a global 
signal to arbitrate phases. 



Figure 5: Result of the simulation model. 

time (1), two memory items (“Mary” and “loves”) falls 
into a time interval that activates heteroassociative net-
work, and the result (“Mary = lover”) is returned to the 
memory neurons at time (2).  Repeating this process, the 
memory neurons finally holds two bindings “Mary = 
lover” and “the = girl = beloved”, which correctly repre-
sents the meaning of the input sentence, “Mary loves the 
girl”.  Since this neural network model satisfies the com-
putational theory of language understanding, we regard 
this model can be a start point to the more sophisticated 
“understanding” computation. 

5 Conclusion 
We explored a computation theory of language under-
standing and its impact to the design of neural network 
model.  We showed that the property of meaning repre-
sentation causes the feature binding problem to the clas-
sical neural network model.  We found that temporal 
complexity, which is suitable for avoiding the problem, 
poses a new problem to the memory model, i.e. phase ar-
bitration.  We discussed the mechanism of phase arbitra-
tion and suggested an existence of a global arbitration 
mechanism.  Based on these discussions, we built a neural 
network simulation model, which satisfies the computa-
tional theory of language understanding. 
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