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Abstract
We explore the use of Support Vector Ma-
chines (SVMs) for biomedical named en-
tity recognition. To make the SVM train-
ing with the available largest corpus – the
GENIA corpus – tractable, we propose to
split the non-entity class into sub-classes,
using part-of-speech information. In ad-
dition, we explore new features such as
word cache and the states of an HMM
trained by unsupervised learning. Experi-
ments on the GENIA corpus show that our
class splitting technique not only enables
the training with the GENIA corpus but
also improves the accuracy. The proposed
new features also contribute to improve
the accuracy. We compare our SVM-
based recognition system with a system
using Maximum Entropy tagging method.

1 Introduction

Application of natural language processing (NLP) is
now a key research topic in bioinformatics. Since
it is practically impossible for a researcher to grasp
all of the huge amount of knowledge provided in
the form of natural language, e.g., journal papers,
there is a strong demand for biomedical information
extraction (IE), which extracts knowledge automati-
cally from biomedical papers using NLP techniques
(Ohta et al., 1997; Proux et al., 2000; Yakushiji et
al., 2001).

The process callednamed entity recognition,
which finds entities that fill the information slots,
e.g., proteins, DNAs, RNAs, cells etc., in the
biomedical context, is an important building block in
such biomedical IE systems. Conceptually, named
entity recognition consists of two tasks:identifica-
tion, which finds the region of a named entity in
a text, andclassification, which determines the se-

mantic class of that named entity. The following il-
lustrates biomedical named entity recognition.

“Thus, CIITAPROTEIN not only acti-
vates the expression of class II genes

DNA
but recruits another B cell-specific
coactivator to increase transcriptional
activity of class II promoters

DNA
in

B cellsCELLTYPE.”

Machine learning approach has been applied to
biomedical named entity recognition (Nobata et al.,
1999; Collier et al., 2000; Yamada et al., 2000;
Shimpuku, 2002). However, no work has achieved
sufficient recognition accuracy. One reason is the
lack of annotated corpora for training as is often
the case of a new domain. Nobata et al. (1999) and
Collier et al. (2000) trained their model with only
100 annotated paper abstracts from the MEDLINE
database (National Library of Medicine, 1999), and
Yamada et al. (2000) used only 77 annotated paper
abstracts. In addition, it is difficult to compare the
techniques used in each study because they used a
closed and different corpus.

To overcome such a situation, the GENIA cor-
pus (Ohta et al., 2002) has been developed, and at
this time it is the largest biomedical annotated cor-
pus available to public, containing 670 annotated ab-
stracts of the MEDLINE database.

Another reason for low accuracies is that biomed-
ical named entities are essentially hard to recognize
using standard feature sets compared with the named
entities in newswire articles (Nobata et al., 2000).
Thus, we need to employ powerful machine learning
techniques which can incorporate various and com-
plex features in a consistent way.

Support Vector Machines (SVMs) (Vapnik, 1995)
and Maximum Entropy (ME) method (Berger et al.,
1996) are powerful learning methods that satisfy
such requirements, and are applied successfully to
other NLP tasks (Kudo and Matsumoto, 2000; Nak-
agawa et al., 2001; Ratnaparkhi, 1996). In this pa-
per, we apply Support Vector Machines to biomed-
ical named entity recognition and train them with



the GENIA corpus. We formulate the named entity
recognition as the classification of each word with
context to one of the classes that represent region
and named entity’s semantic class. Although there
is a previous work that applied SVMs to biomedi-
cal named entity task in this formulation (Yamada et
al., 2000), their method to construct a classifier us-
ing SVMs,one-vs-rest, fails to train a classifier with
entire GENIA corpus, since the cost of SVM train-
ing is super-linear to the size of training samples.
Even with a more feasible method,pairwise(Kreßel,
1998), which is employed in (Kudo and Matsumoto,
2000), we cannot train a classifier in a reasonable
time, because we have a large number of samples
that belong to thenon-entityclass in this formula-
tion. To solve this problem, we propose to split the
non-entity class to several sub-classes, using part-of-
speech information. We show that this technique not
only enables the training feasible but also improves
the accuracy.

In addition, we explore new features such asword
cacheand the states of an unsupervised HMM for
named entity recognition using SVMs. In the exper-
iments, we show the effect of using these features
and compare the overall performance of our SVM-
based recognition system with a system using the
Maximum Entropy method, which is an alternative
to the SVM method.

2 The GENIA Corpus

The GENIA corpus is an annotated corpus of pa-
per abstracts taken from the MEDLINE database.
Currently, 670 abstracts are annotated with named
entity tags by biomedical experts and made avail-
able to public (Ver. 1.1).1 These 670 abstracts are a
subset of more than 5,000 abstracts obtained by the
query “humanAND blood cellAND transcription
factor“ to the MEDLINE database. Table 1 shows
basic statistics of the GENIA corpus. Since the GE-
NIA corpus is intended to be extensive, there exist
24 distinct named entity classes in the corpus.2 Our
task is to find a named entity region in a paper ab-
stract and correctly select its class out of these 24
classes. This number of classes is relatively large
compared with other corpora used in previous stud-
ies, and compared with the named entity task for
newswire articles. This indicates that the task with
the GENIA corpus is hard, apart from the difficulty
of the biomedical domain itself.

1Available via http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
2The GENIA corpus also has annotations for conjunc-

tive/disjunctive named entity expressions such as “human B- or
T-cell lines” (Kim et al., 2001). In this paper we ignore such
expressions and consider that constituents in such expressions
are annotated as a dummy class “temp”.

Table 1: Basic statistics of the GENIA corpus

# of sentences 5,109
# of words 152,216
# of named entities 23,793
# of words in NEs 50,229
# of words not in NEs 101,987
Av. length of NEs (σ) 2.11 (1.40)

3 Named Entity Recognition Using SVMs

3.1 Named Entity Recognition as Classification

We formulate the named entity task as the classi-
fication of each word with context to one of the
classes that represent region information and named
entity’s semantic class. Several representations to
encode region information are proposed and exam-
ined (Ramshaw and Marcus, 1995; Uchimoto et al.,
2000; Kudo and Matsumoto, 2001). In this paper,
we employ the simplestBIO representation, which
is also used in (Yamada et al., 2000). We modify
this representation in Section 5.1 in order to acceler-
ate the SVM training.

In the BIO representation, the region information
is represented as the class prefixes “B-” and “I-”, and
a class “O”. B- means that the current word is at the
beginning of a named entity,I- means that the cur-
rent word is in a named entity (but not at the be-
ginning), andO means the word is not in a named
entity. For each named entity classC, classB-C and
I-C are produced. Therefore, if we haveN named
entity classes, the BIO representation yields 2N + 1
classes, which will be the targets of a classifier. For
instance, the following corresponds to the annota-
tion “Number of glucocorticoid receptors

PROTEIN
in

lymphocytes
CELLTYPE

and ...”.

Number of glucocorticoid receptors
O O B-PROTEIN I-PROTEIN
in lymphocytes and ...
O B-CELLTYPE O ...

3.2 Support Vector Machines

Support Vector Machines (SVMs) (Cortes and Vap-
nik, 1995) are powerful methods for learning a clas-
sifier, which have been applied successfully to many
NLP tasks such as base phrase chunking (Kudo and
Matsumoto, 2000) and part-of-speech tagging (Nak-
agawa et al., 2001).

The SVM constructs a binary classifier that out-
puts+1 or−1 given a sample vectorx ∈ Rn. The de-
cision is based on the separating hyperplane as fol-
lows.

c(x) =


+1 if w · x + b > 0, w ∈ Rn,b ∈ R,
−1 otherwise



The class for an inputx, c(x), is determined by see-
ing which side of the space separated by the hyper-
plane,w · x + b = 0, the input lies on.

Given a set of labeled training samples
{(y1, x1), · · · , (yL, xL)}, xi ∈ Rn, yi ∈ {+1,−1},
the SVM training tries to find theoptimal hy-
perplane, i.e., the hyperplane with the maximum
margin. Margin is defined as the distance between
the hyperplane and the training samples nearest
to the hyperplane. Maximizing the margin insists
that these nearest samples (support vectors) exist
on both sides of the separating hyperplane and the
hyperplane lies exactly at the midpoint of these
support vectors. This margin maximization tightly
relates to the fine generalization power of SVMs.

Assuming that|w·xi +b| = 1 at the support vectors
without loss of generality, the SVM training can be
formulated as the following optimization problem.3

minimize
1
2
||w||2

subject to yi(w · xi + b) ≥ 1, i = 1, · · · , L.
The solution of this problem is known to be written
as follows, using only support vectors and weights
for them.

f (x) = w · x + b=
∑

i∈S Vs

yiαix · xi + b (1)

In the SVM learning, we can use a functionk(xi , x j)
called akernel functioninstead of the inner prod-
uct in the above equation. Introducing a kernel
function means mapping an original inputx using
Φ(x), s.t.Φ(xi) ·Φ(x j) = k(xi , x j) to another, usually
a higher dimensional, feature space. We construct
the optimal hyperplane in that space. By using ker-
nel functions, we can construct a non-linear separat-
ing surface in the original feature space. Fortunately,
such non-linear training does not increase the com-
putational cost if the calculation of the kernel func-
tion is as cheap as the inner product. A polynomial
function defined as (sxi · x j + r)d is popular in ap-
plications of SVMs to NLPs (Kudo and Matsumoto,
2000; Yamada et al., 2000; Kudo and Matsumoto,
2001), because it has an intuitively sound interpre-
tation that each dimension of the mapped space is a

3For many real-world problems where the samples may be
inseparable, we allow the constraints are broken with some
penalty. In the experiments, we use so-called 1-norm soft mar-
gin formulation described as:

minimize
1
2
||w||2 + C

L∑

i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi , i = 1, · · · , L,
ξi ≥ 0, i = 1, · · · , L.

(weighted) conjunction ofd features in the original
sample.

3.3 Multi-Class SVMs
As described above, the standard SVM learning con-
structs a binary classifier. To make a named entity
recognition system based on the BIO representation,
we require a multi-class classifier. Among several
methods for constructing a multi-class SVM (Hsu
and Lin, 2002), we use a pairwise method proposed
by Kreßel (1998) instead of the one-vs-rest method
used in (Yamada et al., 2000), and extend the BIO
representation to enable the training with the entire
GENIA corpus. Here we describe the one-vs-rest
method and the pairwise method to show the neces-
sity of our extension.

Both one-vs-rest and pairwise methods construct
a multi-class classifier by combining many binary
SVMs. In the following explanation,K denotes the
number of the target classes.

one-vs-restConstruct K binary SVMs, each of
which determines whether the sample should
be classified as classi or as the other classes.
The output is the class with the maximumf (x)
in Equation 1.

pairwise ConstructK(K − 1)/2 binary SVMs, each
of which determines whether the sample should
be classified as classi or as classj. Each binary
SVM has one vote, and the output is the class
with the maximum votes.

Because the SVM training is a quadratic optimiza-
tion program, its cost is super-linear to the size of the
training samples even with the tailored techniques
such as SMO (Platt, 1998) and kernel evaluation
caching (Joachims, 1998). LetL be the number of
the training samples, then the one-vs-rest method
takes time inK × OS VM(L). The BIO formula-
tion produces one training sample per word, and
the training with the GENIA corpus involves over
100,000 training samples as can be seen from Ta-
ble 1. Therefore, it is apparent that the one-vs-
rest method is impractical with the GENIA corpus.
On the other hand, if target classes are equally dis-
tributed, the pairwise method will take time inK(K−
1)/2×OS VM(2L/K). This method is worthwhile be-
cause each training is much faster, though it requires
the training of (K − 1)/2 times more classifiers. It
is also reported that the pairwise method achieves
higher accuracy than other methods in some bench-
marks (Kreßel, 1998; Hsu and Lin, 2002).

3.4 Input Features
An input x to an SVM classifier is a feature repre-
sentation of the word to be classified and its context.
We use a bit-vector representation, each dimension



of which indicates whether the input matches with
a certainfeature. The following illustrates the well-
used features for the named entity recognition task.

wk,i =



1 if a word atk,Wk, is theith word
in the vocabularyV

0 otherwise (word feature)

posk,i =



1 if Wk is assigned theith POS tag
in the POS tag listPOS

0 otherwise (part-of-speech feature)

prek,i =



1 if Wk starts with theith prefix
in the prefix listP

0 otherwise (prefix feature)

sufk,i =



1 if Wk starts with theith suffix
in the suffix list S

0 otherwise (suffix feature)

subk,i =



1 if Wk contains theith substring
in the substring listSB

0 otherwise (substring feature)

pck,i =


1 if Wk(k < 0) was assignedith class
0 otherwise (preceding class feature)

In the above definitions,k is a relative word position
from the word to be classified. A negative value rep-
resents a preceding word’s position, and a positive
value represents a following word’s position. Note
that we assume that the classification proceeds left
to right as can be seen in the definition of the pre-
ceding class feature. For the SVM classification, we
does not use a dynamic argmax-type classification
such as the Viterbi algorithm, since it is difficult to
define a good comparable value for the confidence of
a prediction such as probability. The consequences
of this limitation will be discussed with the experi-
mental results.

Features usually form a group with some vari-
ables such as the position unspecified. In this paper,
we instantiate all features, i.e., instantiate for alli,
for a group and a position. Then, it is convenient to
denote a set of features for a groupg and a position
k asgk (e.g.,wk andposk). Using this notation, we
write a feature set as{w−1,w0, pre−1, pre0, pc−1}.4
This feature description derives the following input
vector.5

x = {w−1,1,w−1,2, · · · ,w−1,|V|,w0,1, · · · ,w0,|V|,
pre−1,1, · · · , pre0,|P|, pc−1,1, · · · ,pc−1,K}

4We will further compress this as{〈w, pre〉[−1,0],pc−1}.
5Although a huge number of features are instantiated, only

a few features have value one for a giveng andk pair.

4 Named Entity Recognition Using ME
Model

The Maximum Entropy method, with which we
compare our SVM-based method, defines the prob-
ability that the class isc given an input vectorx as
follows.

P(c|x) =
1

Z(x)

∏

i

α
fi (c,x)
i ,

whereZ(x) is a normalization constant, andfi(c, x)
is a feature function. A feature function is defined
in the same way as the features in the SVM learn-
ing, except that it includesc in it like f (c, x) =
(c is the jth class)∧ wi,k(x). If x contains pre-
viously assigned classes, then the most probable
class sequence, ˆcT

1 = argmaxc1,··· ,cT

∏T
t=1 P(ct|xt) is

searched by using the Viterbi-type algorithm. We
use the maximum entropy tagging method described
in (Kazama et al., 2001) for the experiments, which
is a variant of (Ratnaparkhi, 1996) modified to use
HMM state features.

5 Tuning of SVMs for Biomedical NE Task

5.1 Class Splitting Technique

In Section 3.3, we described that if target classes are
equally distributed, the pairwise method will reduce
the training cost. In our case, however, we have a
very unbalanced class distribution with a large num-
ber of samples belonging to the class “O” (see Table
1). This leads to the same situation with the one-vs-
rest method, i.e., ifLO is the number of the samples
belonging to the class “O”, then the most dominant
part of the training takes time inK ×OS VM(LO).

One solution to this unbalanced class distribution
problem is to split the class “O” into several sub-
classes effectively. This will reduce the training cost
for the same reason that the pairwise method works.

In this paper, we propose to split the non-entity
class according to part-of-speech (POS) informa-
tion of the word. That is, given a part-of-speech
tag setPOS, we produce new|POS| classes, “O-
p” p ∈ POS. Since we use a POS tagger that out-
puts 45 Penn Treebank’s POS tags in this paper, we
have new 45 sub-classes which correspond to non-
entity regions such as “O-NNS” (plural nouns), “O-
JJ” (adjectives), and “O-DT” (determiners).

Splitting by POS information seems useful for im-
proving the system accuracy as well, because in the
named entity recognition we must discriminate be-
tween nouns in named entities and nouns in ordi-
nal noun phrases. In the experiments, we show this
class splitting technique not only enables the feasi-
ble training but also improves the accuracy.



5.2 Word Cache and HMM Features

In addition to the standard features, we exploreword
cache featureand HMM state feature, mainly to
solve the data sparseness problem.

Although the GENIA corpus is the largest anno-
tated corpus for the biomedical domain, it is still
small compared with other linguistic annotated cor-
pora such as the Penn Treebank. Thus, the data
sparseness problem is severe, and must be treated
carefully. Usually, the data sparseness is prevented
by using more general features that apply to a
broader set of instances (e.g., disjunctions). While
polynomial kernels in the SVM learning can effec-
tively generate feature conjunctions, kernel func-
tions that can effectively generate feature disjunc-
tions are not known. Thus, we should explicitly add
dimensions for such general features.

The word cache feature is defined as the disjunc-
tion of several word features as:

wck{k1,··· ,kn},i ≡ ∨k∈kwk,i

We intend that the word cache feature captures the
similarities of the patterns with a common key word
such as follows.

(a) “humanW−2 W−1 W0” and “humanW−1 W0”
(b) “W0 gene” and “W0 W1 gene”

We use a left word cache defined aslwck,i ≡
wc{−k,··· ,0},i , and a right word cache defined as
rwck,i ≡ wc{1,··· ,k},i for patterns like (a) and (b) in
the above example respectively.

Kazama et al. (2001) proposed to use as features
the Viterbi state sequence of a hidden Markov model
(HMM) to prevent the data sparseness problem in
the maximum entropy tagging model. An HMM is
trained with a large number of unannotated texts by
using an unsupervised learning method. Because
the number of states of the HMM is usually made
smaller than|V|, the Viterbi states give smoothed
but maximally informative representations of word
patterns tuned for the domain, from which the raw
texts are taken.

The HMM feature is defined in the same way as
the word feature as follows.

hmmk,i =



1 if the Viterbi state forWk is
the ith state in the HMM’s statesH

0 otherwise (HMM feature)

In the experiments, we train an HMM using raw
MEDLINE abstracts in the GENIA corpus, and
show that the HMM state feature can improve the
accuracy.

5.3 Implementation Issues

Towards practical named entity recognition using
SVMs, we have tackled the following implementa-
tion issues. It would be impossible to carry out the
experiments in a reasonable time without such ef-
forts.
Parallel Training: The training of pairwise SVMs
has trivial parallelism, i.e., each SVM can be trained
separately. Since computers with two or more CPUs
are not expensive these days, parallelization is very
practical solution to accelerate the training of pair-
wise SVMs.
Fast Winner Finding: Although the pairwise
method reduces the cost of training, it greatly in-
creases the number of classifications needed to de-
termine the class of one sample. For example, for
our experiments using the GENIA corpus, the BIO
representation with class splitting yields more than
4,000 classification pairs. Fortunately, we can stop
classifications when a class getsK −1 votes and this
stopping greatly saves classification time (Kreßel,
1998). Moreover, we can stop classifications when
the current votes of a class is greater than the others’
possible votes.
Support Vector Caching: In the pairwise method,
though we have a large number of classifiers, each
classifier shares some support vectors with other
classifiers. By storing the bodies of all support vec-
tors together and letting each classifier have only the
weights, we can greatly reduce the size of the clas-
sifier. The sharing of support vectors also can be
exploited to accelerate the classification by caching
the value of the kernel function between a support
vector and a classifiee sample.

6 Experiments

To conduct experiments, we divided 670 abstracts
of the GENIA corpus (Ver. 1.1) into the train-
ing part (590 abstracts; 4,487 sentences; 133,915
words) and the test part (80 abstracts; 622 sen-
tences; 18,211 words).6 Texts are tokenized by us-
ing Penn Treebank’s tokenizer. An HMM for the
HMM state features was trained with raw abstracts
of the GENIA corpus (39,116 sentences).7 The
number of states is 160. The vocabulary for the
word feature is constructed by taking the most fre-
quent 10,000 words from the above raw abstracts,
the prefix/suffix/prefix list by taking the most fre-
quent 10,000 prefixes/suffixes/substrings.8

The performance is measured byprecision, recall,
andF-score, which are the standard measures for the

6Randomly selected set used in (Shimpuku, 2002). We do
not use paper titles, while he used.

7These do not include the sentences in the test part.
8These are constructed using the training part to make the

comparison with the ME method fair.



Table 2: Training time and accuracy with/without
the class splitting technique. The number of training
samples includes SOS and EOS (special words for
the start/end of a sentence).

no splitting splitting
training time acc. time acc.
samples (sec.) (F-score) (sec.) (F-

score)
16,000 2,809 37.04 5,581 36.82
32,000 13,614 40.65 9,175 41.36
48,000 21,174 42.44 9,709 42.49
64,000 40,869 42.52 12,502 44.34
96,000 - - 21,922 44.93

128,000 - - 36,846 45.99

named entity recognition. Systems based on the BIO
representation may produce an inconsistent class se-
quence such as “O B-DNA I-RNA O”. We interpret
such outputs as follows: once a named entity starts
with “B-C” then we interpret that the named entity
with class “C” ends only when we see another “B-”
or “O-” tag.

We have implemented SMO algorithm (Platt,
1998) and techniques described in (Joachims, 1998)
for soft margin SVMs in C++ programming lan-
guage, and implemented support codes for pairwise
classification and parallel training in Java program-
ming language. To obtain POS information required
for features and class splitting, we used an English
POS tagger described in (Kazama et al., 2001).

6.1 Class Splitting Technique

First, we show the effect of the class splitting
described in Section 5.1. Varying the size of
training data, we compared the change in the
training time and the accuracy with and with-
out the class splitting. We used a feature set
{〈w,pre, suf, sub,pos〉[−2,··· ,2], pc[−2,−1]} and the in-
ner product kernel.9 The training time was mea-
sured on a machine with four 700MHz PentiumIIIs
and 16GB RAM. Table 2 shows the results of the
experiments. Figure 1 shows the results graphi-
cally. We can see that without splitting we soon suf-
fer from super-linearity of the SVM training, while
with splitting we can handle the training with over
100,000 samples in a reasonable time. It is very im-
portant that the splitting technique does not sacrifice
the accuracy for speed, rather improves the accuracy.

6.2 Word Cache and HMM State Features

In this experiment, we see the effect of the word
cache feature and the HMM state feature described
in Section 3.4. The effect is assessed by the
accuracy gain observed by adding each feature
set to a base feature set and the accuracy degra-
dation observed by subtracting it from a (com-

9Soft margin constant C is 1.0 throughout the experiments.

Table 3: Effect of each feature set assessed by
adding/subtracting (F-score). Changes in bold face
means positive effect.

feature set (A) adding (B) sub. (k=2) (C) sub. (k=3)
Base 42.86 47.82 49.27
Left cache 43.25 (+0.39) 47.77 (-0.05) 49.02 (-0.25)
Right cache 42.34 (-0.52) 47.81 (-0.01) 49.07 (-0.20)
HMM state 44.70 (+1.84) 47.25 (-0.57) 48.03 (-1.24)
POS 44.82 (+1.96) 48.29 (+0.47) 48.75 (-0.52)
Prec. class 44.58 (+1.72) 43.32 (-4.50) 43.84 (-5.43)
Prefix 42.77 (-0.09) 48.11 (+0.29) 48.73 (-0.54)
Suffix 45.88 (+3.02) 47.07 (-0.75) 48.48 (-0.79)
Substring 42.16 (-0.70) 48.38 (+0.56) 50.23 (+0.96)

plete) base set. The first column (A) in Ta-
ble 3 shows an adding case where the base fea-
ture set is {w[−2,··· ,2]}. The columns (B) and
(C) show subtracting cases where the base feature
set is{〈w,pre, suf, sub, pos, hmm〉[−k,··· ,k] , lwck, rwck,
pc[−2,−1]} with k = 2 andk = 3 respectively. The
kernel function is the inner product. We can see that
word cache and HMM state features surely improve
the recognition accuracy. In the table, we also in-
cluded the accuracy change for other standard fea-
tures. Preceeding classes and suffixes are definitely
helpful. On the other hand, the substring feature is
not effective in our setting. Although the effects of
part-of-speech tags and prefixes are not so definite,
it can be said that they are practically effective since
they show positive effects in the case of the maxi-
mum performance.

6.3 Comparison with the ME Method

In this set of experiments, we compare our
SVM-based system with a named entity recog-
nition system based on the Maximum Entropy
method. For the SVM system, we used the fea-
ture set{〈w,pre, suf,pos,hmm〉[−3,··· ,3], lwc3, rwc3,
pc[−2,−1]}, which is shown to be the best in the pre-
vious experiment. The compared system is a max-
imum entropy tagging model described in (Kazama
et al., 2001). Though it supports several character
type features such asnumberandhyphenand some
conjunctive features such as wordn-gram, we do not
use these features to compare the performance un-
der as close a condition as possible. The feature set
used in the maximum entropy system is expressed
as{〈w, pre, suf, pos,hmm〉[−2,··· ,2], pc[−2,−1]}.10 Both
systems use the BIO representation with splitting.

Table 4 shows the accuracies of both systems. For
the SVM system, we show the results with the inner
product kernel and several polynomial kernels. The
row “All (id)” shows the accuracy from the view-

10When the width becomes [−3, · · · ,3], the accuracy de-
grades (53.72 to 51.73 in F-score).
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Figure 1: Effect of the class splitting technique.

point of the identification task, which only finds the
named entity regions. The accuracies for several ma-
jor entity classes are also shown. The SVM system
with the 2-dimensional polynomial kernel achieves
the highest accuracy. This comparison may be un-
fair since a polynomial kernel has the effect of us-
ing conjunctive features, while the ME system does
not use such conjunctive features. Nevertheless, the
facts: we can introduce the polynomial kernel very
easily; there are very few parameters to be tuned;11

we could achieve the higher accuracy; show an ad-
vantage of the SVM system.

It will be interesting to discuss why the SVM sys-
tems with the inner product kernel (and the polyno-
mial kernel withd = 1) are outperformed by the ME
system. We here discuss two possible reasons. The
first is that the SVM system does not use a dynamic
decision such as the Viterbi algorithm, while the ME
system uses it. To see this, we degrade the ME sys-
tem so that it predicts the classes deterministically
without using the Viterbi algorithm. We found that
this system only marks 51.54 in F-score. Thus, it can
be said that a dynamic decision is important for this
named entity task. However, although a method to
convert the outputs of a binary SVM to probabilistic
values is proposed (Platt, 1999), the way to obtain
meaningful probabilistic values needed in Viterbi-
type algorithms from the outputs of a multi-class
SVM is unknown. Solving this problem is certainly
a part of the future work. The second possible rea-
son is that the SVM system in this paper does not
use any cut-off or feature truncation method to re-
move data noise, while the ME system uses a sim-
ple feature cut-off method.12 We observed that the
ME system without the cut-off only marks 49.11 in

11C, s, r, and d
12Features that occur less than 10 times are removed.

F-score. Thus, such a noise reduction method is
also important. However, the cut-off method for the
ME method cannot be applied without modification
since, as described in Section 3.4, the definition of
the features are different in the two approaches. It
can be said the features in the ME method is “finer”
than those in SVMs. In this sense, the ME method
allows us more flexible feature selection. This is an
advantage of the ME method.

The accuracies achieved by both systems can be
said high compared with those of the previous meth-
ods if we consider that we have 24 named entity
classes. However, the accuracies are not sufficient
for a practical use. Though higher accuracy will be
achieved with a larger annotated corpus, we should
also explore more effective features and find effec-
tive feature combination methods to exploit such a
large corpus maximally.

7 Conclusion

We have described the use of Support Vector Ma-
chines for the biomedical named entity recognition
task. To make the training of SVMs with the GE-
NIA corpus practical, we proposed to split the non-
entity class by using POS information. In addition,
we explored the new types of features, word cache
and HMM states, to avoid the data sparseness prob-
lem. In the experiments, we have shown that the
class splitting technique not only makes training fea-
sible but also improves the accuracy. We have also
shown that the proposed new features also improve
the accuracy and the SVM system with the polyno-
mial kernel function outperforms the ME-based sys-
tem.
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Table 4: Comparison: The SVM-based system and the ME-based system. (precision/recall/F-score)

SVM ME
inner product polynomial (s = 0.01, r = 1.0))

type # d = 1 d = 2 d = 3
All (2,782) 50.7/49.8/50.2 54.6/48.8/51.5 56.2/52.8/54.4 55.1/51.5/53.2 53.4/53.0/53.2
All(id) 71.8/70.4/71.1 75.0/67.1/70.8 75.9/71.4/73.6 75.3/70.3/72.7 73.5/72.9/73.2
protein (709) 47.2/55.2/50.8 45.7/64.9/53.6 49.2/66.4/56.5 48.7/64.7/55.6 49.1/62.1/54.8
DNA (460) 39.9/37.6/38.7 48.2/31.5/38.1 49.6/37.0/42.3 47.9/37.4/42.0 47.3/39.6/43.1
cell line (121) 54.8/47.1/50.7 61.2/43.0/50.5 60.2/46.3/52.3 62.2/46.3/53.1 58.0/53.7/55.8
cell type (199) 67.6/74.4/70.8 67.4/74.9/71.0 70.0/75.4/72.6 68.6/72.4/70.4 69.9/72.4/71.1
lipid (109) 77.0/61.5/68.4 83.3/50.5/62.9 82.7/61.5/70.5 79.2/56.0/65.6 68.9/65.1/67.0
other names (590) 52.5/53.9/53.2 60.2/55.9/58.0 59.3/58.0/58.6 58.9/57.8/58.3 59.0/61.7/60.3
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