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Native-Code Compilation of Feature
Structures

TAKAKI MAKINO, YUSUKE MIYAO, KENTARO TORISAWA,
AND JUN-ICHI TsuJII

1.1 Introduction

LiLFeS (Makino, Torisawa, & Tsujii, 1997) is a solution for providing
a programming environment with efficient processing of typed feature
structures (TFSs) by an abstract machine approach. While optimiza-
tion methods specific to HPSG parsing have proven to drastically increase
parsing speed (Kiefer, Krieger, Carroll, & Malouf, 1999; Oepen & Car-
roll, 2000; Torisawa, Nishida, Miyao, & Tsujii, 2000), efficient feature
structure processing is still required not only for efficient parsing but
also for various applications of unification-based processing.

The existing LiLFeS system (LiLFeS-1) has been developed as a
byte-code emulator of an abstract machine. Because of its efficiency and
seamless design of feature structure and program descriptions, large-
scale applications can be easily developed and efficiently executed on
the system. Currently implemented applications include wide-coverage
Japanese and English grammars (Mitsuishi, Torisawa, & Tsujii, 1998;
Tateisi, Torisawa, Miyao, & Tsujii, 1998), a statistical disambiguation
module for the Japanese grammar (Kanayama, Torisawa, Mitsuisi, &
Tsujii, 2000), and the LinGO grammar translated to LiLFeS (Miyao,
Makino, Torisawa, & Tsujii, 2000).

In this chapter we propose the LiLFeS-II system, a further improve-
ment of LiLFeS by an exhaustive optimization of feature structure uni-
fication. In order to eliminate redundant operations in unification code,
our new system is totally redesigned along the following policies.

Fine-grained instruction set. Each instruction in the LiLFeS-II ab-
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Input program

1
| Kernel Converter | Removes syntax sugars in the in-
put program
4
‘ Type Hierarchy Analyzer‘ Analyzes types in the program
1
‘Data—ﬁow Analyzer‘ Analyzes the flow of data in the
program
4
‘ Type Hierarchy Compiler ‘ Generates type tables
4
| Code Generator | Generates optimized abstract
machine code
1
|Code Converter| Maps abstract machine instruc-
tions into CPU instructions
4

Binary executable
FIGURE 1 The LiLFeS native-code compiler

stract machine corresponds to a more low-level operation than that
in the LiLFeS-1 abstract machine. This enables us much deeper
and finer optimizations (described in Section 1.4).

Static program analyzers. The LiLFeS-II system analyzes input pro-
grams thoroughly by the Type Hierachy Analyzer and the Data-
flow Analyzer. The output of these analyzers helps us to determine
optimizable operations in the compiled code (described in Section
1.5).

Native-code compilation. The design of the LiLFeS-I instructions
are intended to map its code directly into CPU-level instructions
and run directly on the CPUs. The fine-grained instructions can-
not be used without native-code compilation because the overhead
of executing each instructions is too heavy in a byte-code emula-
tion mechanism. We should note that simple-minded native code
compilation does not bring much efficiency; optimization by above
two analyzers are essential for efficient unification.

Figure 1 shows the flow of compilation in the LiLFeS-I system.
First, Kernel Converter removes syntax sugars in the program to make
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the compiler simple. Then two analyzers, Type Hierarchy Analyzer and
Data-flow Analyzer, are invoked to gather information from the program.
After that, Code Generator compiles a LiL.LFeS program into LiL.FeS-I
abstract machine instructions, using information from the static analyz-
ers. Finally, machine-dependent Code Converter converts the instruction
sequence into an assembly code output. This chapter does not describe
Kernel Converter and Code Converter since they are not major parts
for our optimization techniques.

Section 1.2 overviews the LiLFeS language. Section 1.3 describes the
design of the LiLFeS system to efficiently execute the program in the
LiLFeS language. Section 1.4 describes the LiLFeS-II abstract machine.
Section 1.5 describes two static analyzers, Type Hierarchy Analyzer and
Data-flow Analyzer. Section 1.6 describes the compilation of the LiLFeS
program into abstract machine code, and optimization using the output
of the static analyzers. Section 1.7 evaluates the performance of LiLFeS-
I against LiLFeS-1 and LkB (Copestake, 1992) through the empirical
results on the parsing performance with the translated LinGO grammar.

1.2 LiLFeS as a programming language

The LiLFeS language is a programming language to write definite clause
programs with typed feature structures (TFSs). It is similar to Prolog
and has various expressions for both processing TFSs and describing
procedures. Since TFSs can be used like first order terms in Prolog,
the LiLFeS language can describe various kinds of application programs
based on TFSs. Examples include HPSG parsers, HPSG-based grammars,
and compilers from HPSG to CFG. Furthermore, other natural language
processing systems can be easily developed because TFS processing can
be directly written in the LiLFeS language.

Figure 2 shows a sample LiLFeS program, which is a very simple
parser and grammar. The LiLFeS language makes a clear distinction
between type definitions (the upper section in Figure 2) and definite
clause programs with feature structures (the lower section in Figure 2).
A type (e.g., phrase) is defined by specifying supertypes (e.g., sign)
and features (e.g., HEAD_DTR\, NONHEAD_DTR\) with their appropriate
types (e.g., sign). After defining the types, we can use an instance of a
feature structure as a first order term in the Prolog syntax. For example,
in the predicate head_feature_principle, the $HEAD_DTR and $MOTHER
are variables and supposed to be the structure of a sign defined in the
type definition section. This predicate is called in the predicate parse_
in order to apply the Head Feature Principle (Pollard & Sag, 1994).
Having the same name variable indicates they are structure-shared. In
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head <- [bot]. W
valence <- [bot] + [SUBJ\list, COMPS\list, SPR\list].

category <- [bot] + [HEAD\head, VAL\valence].

local <- [bot] + [CAT\category, CONT\bot].

synsem <- [bot] + [LOCAL\local, NONLOCAL\bot].

sign <- [bot] + [PHON\list, SYNSEM\synsem]. Type
word <- [sign]. .
phrase <- [sign] + [HEAD_DTR\sign, NONHEAD_DTR\sign]. definitions

id_schema <- [pred].
head_feature_principle <- [pred].
lexical_entry <- [pred].

parse <- [pred]. J
parse_ <- [pred].

id_schema(head subject schema, $LEFT, $RIGHT, $HEAD, $NONHEAD, $MOTHER) :- W
$LEFT = $NONHEAD,
$RIGHT = $HEAD,
$MOTHER = (HEAD_DTR\ ($HEAD & SYNSEM\LOCAL\CAT\VAL\SUBJ\[$SYNSEM]) &
NONHEAD_DTR\ ($NONHEAD & SYNSEM\$SYNSEM)) .
head_feature_principle ($HEAD_DTR, $MOTHER) :-

$HEAD_DTR = SYNSEM\LOCAL\CAT\HEAD\$HEAD, Definite

$MOTHER = SYNSEM\LOCAL\CAT\HEAD\$HEAD. !
parse_([$WORD|$TAIL], $TAIL, _, $LEXICON) :- Clause

lexical_entry($WORD, $LEXICON). programs

parse_($SENTENCE, $TAIL, [_|$LENGTH], $MOTHER) :-
parse_($SENTENCE, $MID, $LENGTH, $LEFT),
parse_($MID, $TAIL, $LENGTH, $RIGHT),
id_schema ($NAME, $LEFT, $RIGHT, $HEAD, $NONHEAD, $MOTHER),
head_feature_principle ($HEAD, $MOTHER).

parse ($SENTENCE, $SIGN) :- parse_($SENTENCE, [], $SENTENCE, $SIGN). J

FIGURE 2 A sample program written in the LiLFeS language

head_feature_principle, the values folowed by the HEAD feature of
$HEAD_DTR and that of $MOTHER are structure-shared because they are
indicated by the same variable $HEAD.

The LinGO grammar is written in 7DL (Krieger & Schéfer, 1994),
and is successfully translated to LiLFeS (Miyao et al., 2000). The perfor-
mance evaluation with the LinGO grammar is reported in Section 1.7.

1.3 The LiLFeS-1 architecture

The LiLFeS-1 architecture is designed for efficient processing of TFSs
as well as definite-clause programs. This section describes the key ideas
for the effiency: i) the structure of the LiLFeS abstract machine, ii) the
efficient representation of TFSs on the memory, and iii) the compilation
of a TFS into an instruction sequence.

In this section, we first describe the architecture of LiLFeS, which is
the common basis of the LiLFeS-1 and LiLFeS-II. After that, we overview
the idea of compiling a TFS.

1.3.1 Structure of the LiLFeS abstract machine

LiLFeS-1 abstract machine, as well as LiLFeS-II abstract machine, is a
virtual machine which is designed to perform TFS unification and con-
trols execution of definite clause programs. LiLFeS-1 abstract machine
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is designed as an amalgamation of WAM (Ait-Kaci, 1991) for definite-
clause handling and AMAVL (Carpenter & Qu, 1995) for TFS unifi-
cation, and implemented by a byte-code emulator on a real machine.
LiLFeS-T abstract machine also inherits the design of LiLLFeS-1 although
its implementation is in a different and further optimized way.

The LiLFeS abstract machine consists of the following components,
adopted from WAM and AMAVL:

e Static storages:
Code area stores compiled code of TFSs and a type hierarchy.
Type unification table is a two-dimensional array holding the
result of unifying two types.
Type instruction table is a two-dimensional array holding point-
ers to the code used in a general unification routine.
Feature offset table holds feature offset of a type (mentioned in
1.3.2)
e Dynamic storages:
Heap (global stack) consists of cells and holds TFSs generated
at run-time.
Environment stack (AND stack) preserves variable values at
predicate call.
Choice-point stack (OR stack) holds backtracking information
(variable and stack binding, etc.)
Trail stack keeps track of overwritten cells that needs to be re-
stored on backtracking.
Push-down list stacks TFSs remaining to be unified.
e Registers: Code pointers, Pointers for dynamic storages, backtrack-
ing and cut controls, bindings of temporary variables, etc.

All the type tables are from AMAVL, and the other storages and
registers are implemented based on WAM. We do not discuss them any-
more; refer their original papers (Ait-Kaci, 1991; Carpenter & Qu, 1995)
for details.

1.3.2 Representation of TFSs on the memory

Both LiLFeS-1 and LiLFeS-T abstract machines use the AMAVL-style
TFS representation on the memory (Carpenter & Qu, 1995). Although
the TFSs are restricted to totally well-typed feature structures, efficient
TFS manipulation is possible on this style of TFS representation. We
briefly describe this representation in this section.

A cell, the data unit to represent TFSs, is a pair of a tag and a
value. Figure 3 shows the representation of various TFSs on the LiLFeS
abstract machine. In this chapter, a cell with a tag TAG and a value
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‘ Type ‘ ‘ Feature List

Pointer

Variable Type X eatl, Feat2)
(structure ..., Featn]
without

substructures)

Structure

Feature List Table

Value of feature Featl

Value of feature Feat2

Value of feature Featn

FIGURE 3 Memory representation of a TFS

VALUE is denoted as TAG"VALUE.

A TFS with n features is represented by n + 1 contiguous cells on
the Heap. The first cell tagged as tstr holds the type of the structure,
and each of the remaining n cells holds a pointer to the substructures
of a feature, or the value of a feature if it is represented in a single
cell. The correspondence between the features and the cell positions is
stored in Feature offset table. If a feature structure has no features, or
all substructures are their default values, the structure is represented by
a cell with tvar tag instead of a full representation with a cell block
with a tstr tag.

A cell with a tptr tag is a pointer and used to refer a TFS on an-
other location. Pointers can be chained until it reaches a cell with other
than a tptr tag; we do not use self-referencing pointers to represent un-
bounded variables as in WAM and Aquarius Prolog. A structure-sharing
is represented by referring the same location.

1.3.3 Compiling a TFS

Unification is an operation defined between two feature structures. When
both input structures are given at run-time, the only method to unify
them is to traverse them at run-time as illustrated in Figure 4 (a). Here-
after we call a unification routine based on this method, a general unifier.

However, in many cases, one of the two structures is known in ad-
vance at compile-time. For example, the unification in head_

feature_

principle in Figure 2 is given in the program and does not change
during run-time. We can compile such a TFS into specialized code for
unification, as illustrated in Figure 4 (b), rather than using a general
unifier. The compiled unification routine can be much more efficient than
a general unifier because we can optimize the unifier at compile-time to
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FIGURE 4 General and specialized unification
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(a) Feature Structure F' (b

~

Compiled code C'
FIGURE 5 Compilation in LiLFeS-1 system

minimize the operation on the other structure at unification time, while
any general unifier has to traverse both of the input structures at each
unification.

The idea is similar to the compilation of Prolog first-order terms (e.g.
WAM (Ait-Kaci, 1991) and Aquarius Prolog (Van Roy, 1990)), appli-
cation of these studies to feature structure unification is not straight-
forward due to the differences between Prolog terms and TFSs, such as
fixedness of arity, existence of structure-sharing, and type hierarchy.

AMAVL (Carpenter & Qu, 1995) and AMALIA (Wintner, 1997) are
the pioneers for TFS compilation. Both compile the type hierarchy and
given TFSs into an instruction sequence of an abstract machine, and
emulate the execution of the abstract machine instructions by another
program. This design is inherited to the LiLFeS-1 system, which exn-
tended the design of AMAVL and integrated execution of definite-clause
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(1) TFS of LiLFeS program, (2) Code representation, (3) Heap Representation
FIGURE 6 Unification process in LiLFeS-1 system

programs.

In the proposal of AMAVL, four kinds of instructions, ADDNEW,
PUSH, POP and UNIFYVAR, are used to describe the compiled TFS.
These instructions form a traversing process of a TFS. PUSH and POP
correspond to following and retreating a feature respectively, ADDNEW
corresponds to a type unification, and UNIFYVAR corresponds to structure-
sharing. Figure 5 shows the correspondence between the instructions and
the traversing process.

When a compiled code from a feature structure ¢, is executed, the
code modifies another feature structure ¢; on the memory to the unified
result ¢ U ¢2. Figure 6 shows an example of execution. This unification
is more efficient than unifying two TFSs on memory, since we do not
need to inspect and traverse both TFSs recursively.

1.4 Architecture of the LiLFeS-II abstract machine

In this section we describe the architecture of the LiLFeS-TI abstract
machine. Since the major difference between the abstract machine ar-
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chitecture of LiLFeS-1 and that of LiLFeS-Il is their instruction set, we
focus on the instruction set in the LiLFeS-II in this section. See section
1.3 for the other part of the architecture.

1.4.1 Problem of the compilation in the LiLFeS-1 system

Once we inspect the unification process in AMAVL and in LiLFeS-1, we
can see many redundant operations in the compiled code. Figure 7 (a)
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illustrates how LiLFeS-1 abstract machine operates in compiled unifica-
tion code of cons & hd\(aux & ...) . Each dashed box represents one
instruction. From this chart, you can see that some conditional branches
are redundant. For example, conditional branches and check the
same thing, and can be combined. Moreover, another conditional branch
goes to tvar whenever the branches and were tvar. In ad-
dition, if we can use the information of the type hierarchy, some more
operations become unnecessary. For example, a conditional branch
always goes to ‘no’ if any node with the type cons (a constituent of a
list) has always two features, and this number does not change in the
given type hierarchy.

We have few ways to optimize these redundancies in the architecture
of LiLFeS-1 abstract machine, since they are embedded in a single in-
struction. In order to remove such redundant operations, the abstract
machine have to either (i) provide an optimized version of the instruc-
tions, or (ii) divide an instruction into two or more fine-grained instruc-
tions. Both ways seem problematic; the former causes us to provide
tons of slightly different versions of instructions (our preliminary study
found that we will need more than 50 variations for a PUSH instruc-
tion). On the other hand, the latter increases the emulation overhead of
the abstract machine, since the overhead is proportional to the number
of emulating instructions. We need to divide one LiLFeS-1 instruction
into 10 or more fine-grained instructions for a certain level of optimiza-
tion, and 10 times of emulation overhead will drawn out the benefit of
optimization.

In the architecture of LiLFeS-TI abstract machine, we choose the lat-
ter way, and adopt native-code compilation to avoid its problem. That
is, use a fine-grained instruction set to make extensive optimization pos-
sible, and map the abstract machine instructions to native-code instruc-
tions so that the latest CPU can perform unification without emulation
overhead.

1.4.2 Instruction set

We totally redesigned the instruction set in the LiLFeS-II. Basic instruc-
tions and definite clause control instructions are based on Berkeley Ab-
stract Machine (Van Roy, 1990), and instructions for manipulating TFSs
are newly designed for LiLFeS-II.

In the new instruction set, we tried to make instructions as fine-
grained as possible. Many instruction corresponds to one or a few CPU
instructions; for example, instruction move can be mapped to one in-

INote that this figure is simplified from the actual code and operation.
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struction in the CPU instructions. Thus optimization on the abstract
machine code results in optimization in CPU instruction level.

For simplicity, some complex instructions are introduced, which is
mapped to many (more than five) CPU instructions. Examples are deref
(pointer chain dereference), choice (backtracking control), and coerce
(Type table access). They are introduced since their operations are
atomic, that is, the operation will never be partially optimized by the
information from static analysis.

The complete instruction set of the LiLFeS abstract machine is shown
in the Appendix A. In the next two section we describe the method to
compile a TFS into optimized code using this instruction set.

1.5 Static analyzers

LiLFeS-Tl native-code compiler runs two static analyzers on the source
code in order to optimize the output code. One is Type Hierarchy An-
alyzer, which restricts the possible unification results of each type and
helps us reduce unused conditional branches in code generation. The
other is Data-Flow Analyzer, which gives value information of variables
in definite clause programs by abstract interpretation technique(Van
Roy, 1990). In LiLFeS, the most important information for optimiza-
tion is the lower bound of variables, that is, the most general feature
structure that the variable can have. This information also gives us a
chance to reduce unnecessary conditional branches.

1.5.1 Type hierarchy analysis

Some types do not require ‘full’ treatment of unification. For example,
type nil, which marks the end of a list, cannot have any feature, thus the
part of the unification code that deals with features and substructures is
not necessary. In this case, the lighter unification code without treatment
of features and substructures can be used.

A condition of a type is useful for optimization when it determines
conditional branches in the unification algorithm. The followings are
the conditional branches used in the code generation, where T is the
compiling TFS and V is another TFS given at run-time:

e Which tag V has (tvar, tstr)

e Whether the type of V' is compatible to the type of T'.

e What is the unified type of V' and T

e Whether the unified type ¢ is equal to the original type of V.

e Whether ¢ has additional features or more strict appropriateness
from those of the type of V.

e In which offset the required feature of the structure V is.
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Each line denotes that the upper type is the subtype of the lower type.
Notation “+ [feat\ app, ...]” says that the features feat and its appopriate
type app (omitted if bot) is specified to the type.

FIGURE 8 Sample type hierarchy

From the above we derived the following conditions useful for opti-
mization according to the type t.

Condition Final True if the type ¢ has no subtypes. In this case, uni-
fied result type is always equal to the original type.

Condition Never_Feature True if the type t cannot be unified with any
type that have features. In this case, any V with tstr tag results
in a failure.

Condition Preserve_StrType True if any type that have features suf-
feres no change from the unification with ¢. In this case, the com-
piled code never update the type if V' has tstr tag.

Condition Fized_NF True if any subtype of the type ¢t have no addi-
tional feature. Condition Final implies this condition.

Condition Preserve_NF Trueif a TFS of any type suffers no change on
its feature set from successful unification with the type t. Condition
Preserve_StrType implies this condition.

Condition Fized_Approp True if any subtype of ¢ has the same ap-
propriateness condition and constraints as ¢ has. Condition Final
implies this condition.

Condition Preserve_Approp True if a TFS of any type suffers no change
on its appropriate conditions or constraints from successful unifi-
cation with the type t. Condition Preserve_StrType implies this
condition.
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Type \ Condition |Final Never- Preserve_ Fized_ Preserve. Fized. Preserve_
Feature StrType NF NF Approp Approp
bot
schooltype X
high_school X X
college X X
person X X X
student X
high_school_student| X X X
college_student X X X
business_man X X
white_collar X X X
blue_collar X X X

X denotes the type satisfies the condition.
TABLE 1 Condition table of the sample type hierarchy

Suppose a type hierarchy is given as in Figure 8. Optimization con-
ditions of the types on the type hierarchy is shown in Table 1. As you
can see, most of the types satisfies some conditions in this example. This
means that unification code of these types can be optimized.

The type schooltype satisfies Never_Feature condition, since all of
its subtype has no feature. This condition can reduce compiled code
drastically, since the no check for features are necessary.

The type person satisfies Preserve_StrType condition, since any type
with features suffers no change from unifying this type. Code for chang-
ing type on a tstr-tagged feature strcture can be safely removed from
compiled code for this type.

The type student satisfies Fized_NF condition, since any subtype of
this type has no additional features. This lets us replace a table access
for an offset of substructures to a fixed integer value.

These optimization conditions are passed to the compiled code gen-
erator to help generation of an optimized code. The generation of the
code is desctibed in the Section 1.6.

1.5.2 Global data-flow analysis

Global data-flow analysis is a method to derive information of variables
from the source code. Aquarius Prolog (Van Roy, 1990) performs the
global data-flow analysis and obtains speed-up around 10%. Since TFSs
have types that Prolog does not have and data-flow analysis gives type
information for variables, the benefit is expected to be larger than that
on Prolog.

In the LiLFeS-I native-code compiler, global data-flow analysis mod-
ule developed by Yoshida (Yoshida, Makino, Torisawa, & Tsujii, 1998) is
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implemented. Data-flow analyzer traces the execution of definite clause
programs with abstract value of variables and obtain the lower-bound
value of a variable, that is, the common-part (meet) of all the possible
values of the variable.

Code generator uses this lower-bound value information to optimize
the generated code in the following ways:

T is subsumed by the lower-bound value of V

In the case that T is equal to, or more specific than, the lower-bound
value of V, all of the unification operations are not necessary except
binding variables in 7" to V.

Lower-bound value with substructures

When the lower-bound value has substructures, it means that the vari-
able V' always holds a value with tstr tag. This means that code for
tag checking and code corresponding to tvar can be safely removed.

Lower-bound value restricts unifiable type set

A table access can be removed if unifiable type set, a set of types that
is possible to appear as V and compatible to 7', is small enough. For
example, suppose the lower-bound value of V' is 1list, and T’s type is
nil. Since Type Hierarchy Analyzer determins that cons is Final, it
restricts that unifiable type set to {1ist, nil}. Thus we can replace the
coerchk instruction, which accesses Type table to check whether V’s
type is unifiable, into a set of simple conditional jumps.

1.6 Compilation

The Code Generator in the LiLFeS-II native-code compiler compiles a
LiLFeS program into an instruction sequence. Since the instruction set
is fine-grained, we can optimize the code by the result of static analyses
in Section 1.5. In this section we describe the actual algorithm to gener-
ate abstract machine code of feature structure unification, and how the
optimization condition are used to optimize the code.

In the following, the abstract machine code for the unification V=T
is provided, where V and T are TFSs and T is given at compile-time.
The code is described for each case of the representation of T', tvar or
tstr.

1.6.1 TFS without substructures

If T has no substructures, the unification action is mainly a manipulation
of types, that is, updating V’s type to the unified type. Since the memory
representation of V' can be tagged by either tvar or tstr, we need a
separated instruction sequence for these tags. Note that, in case of tstr,
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Instruction Description
deref V, W, X Dereference the pointer V
switch tstr, X, L1, L2, fail Branch according to the tag: tvar or tstr.
label L1 Case of tvar
exttype X, Y Extract V's type to Y
coerce Y, tr, Z, fail Get the unified type (fail if incompatible)
jump eq, Y, Z, L3 If Y=Z, jump to the exit
trail W In case of Y#Z, save the original value for
backtracking
move tvar~z, [W] Overwrite the new value (tvar~t’)
jump L3 Jump to the exit
label L2 Case of tstr
exttype X, Y’ Extract V’s type to Y’
coerce Y’, tp, Z’, fail Get the unified type (fail if incompatible)
jump eq, Y’, Z°, L3 If Y’=2’, jump to the end
jecifa Y?, Z’, W, L3 Jump to the general unification routine if
needed
trail W If no operations are needed, save the orig-
inal value for backtracking
move tstr-z’, [W] Overwrite new value (tstr~t?’)
label L3 End of unification

FIGURE 9 The most generic code for V =T when T do not have

deref r0, rl, r2

switch tstr, r2, L1, L2, fail
label L1

exttype r2, r3

coerce r3, tp, r4, fail
jump eq, r3, r4, L3
trail ri

move tvar“r4d, [ri]

jump L3
label L2

exttype r2, r3

coerce r3, tr, r4, fail
jump eq, r3, r4, L3
jccifa r3, r4, ri, L3
trail r2

move tstr°r4, [ri]
label L3

(a) Most generic code

label L3

(b) Optimization by

substructures

deref r0O, rl, r2

exttag r2, r3

jump ne, r3, tvar, fail
exttype r2, r3

coerce r3, tr, r4, fail
jump eq, r3, r4, L3
trail ril

move tvar“r4, [ril]

deref r0, rl, r2
jump eq, r2, tvar®nil, L3
jump ne, r3, tvar“list, fail

trail ri
move tvar“nil, [ri]

label L3

(c) Optimization by
data-flow
analysis

type hierarchy
analysis

FIGURE 10 The code for V =nil
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the change of the type may affect V’s features according to the total
well-typedness and constraints; In this case, we call the compiled code
for general unification to perform the type-specific manipulation.

Figure 9 shows the most generic (i.e. unoptimized) abstract ma-
chine code for this case. Note that, in LiLFeS-1, only one instruction
(ADDNEW) represents this sequence of operations. This means that
now we are able to optimize the code by manipulating the code in the
LiLFeS-I.

For example, suppose we are about to compile a unification “V =
nil,” where V is a variable and pointed by a register r (0). The compiler
has analyzed the type hierarchy and found that nil satisfies Never_Feature
condition, i.e., any feature structure unifiable with nil has no features.
In this case the code can be optimized from the most generic code, shown
in Figure 10 (a), to the optimized code, shown in Figure 10 (b).

In addition to that, suppose the case that nil satisfies Final con-
dition (i.e. nil has no subtype) and the data-flow analyzer detects the
lower-bound of V' is 1ist (i.e. the unification V =nil is in the context
where V' is always list or its subtype). Although this example may look
like a rare case, we often encounter such a case, e.g. the first element of
the traditional append predicate. In this case, now it is unnecessary to
access the type table, since the unification succeeds only if V' is 1list or
Visnil, and the result is always nil. The code can be further optimized
as shown in shown in Figure 10 (c).

As you can see in this example, the code generater reduces unneces-
sary conditional branches and replaces some other condition checks to
more efficient ones according to the information from static analyses.
This optimization is the key to the efficient TFS unification.

1.6.2 TFS with substructures

When T has one or more substructures, the algorithm gets more com-
plicated. However, the basic principle is the same as that of Prolog: to
construct 7" on the fly if V' doesn’t have any substructures (write mode),
or apply this algorithm recursively if V' has substructures (read mode).
In both modes, V’s type is updated and features/constraints might be
added according to the updated type.

Figure 11 is the most generic version of the abstract machine code.
Vertical dots are the placeholder where generated code for substructures
should be stored. One major difference of this code from LiLFeS-1 is
that this supports 2-streamed unification, which is described in (Roy,
2000). To eliminate excess conditional jumps checking whether we are
in read-mode or in write-mode, we split the compiled code into two
streams, read-mode stream and write-mode stream, and connect them
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Instruction Description
deref V, W, X Dereference the pointer V'
switch tstr, X, L1, L2, fail Branch according to the tag: whether tstr
or tvar
label L2 Case of tstr
exttype X, Y Extract V's type to Y
coerce Y, type, Z, fail Get the unified type (fail if incompatible)
jump eq, Y, Z, L6 In case of Y=Z, go to the recursive code
directly
jecifa Y, Z, W, L7 Call general unification if needed
trail W If no operations are needed, save the orig-
inal value for backtracking
move tstrz, [W] Overwrite the new value (tstr~t’)
jump L6 Jump to the recursive part
label L7 Return from general unification
deref W, W Extra dereference may be necessary
label L6 Start of the recursive part (read-mode)
offset Z, featl, 01 Read offset of the feature featl from the
table
adda w, 01, Vi Calculate the address of the substructure
in featl
Recursive unification code for the sub-
structure in featl is put here
offset Z, feat2, 02 Read offset of the feature feat2 from the
table
adda W, 02, V2 Calculate the address of the substructure
in feat2
Recursive unification code for the sub-
structure in featl is put here
Repeat until all necessary substructures
are processed
jump L3 Jump to exit
label L1 Case of tvar
exttype X, Y’ Extract V's type to Y’
coerce Y’, type, Z, fail Get the unified type (fail if incompatible)
trail W Save the original value for backtracking
move r(h), [W] Bind the variable to the top of Heap
(though there is no structure yet)
jump ne, type, Z, L4 Branch whether Z=type
push tstr-type, r(h), 1 Store the top of the structure
jump L5 Jump to the recursive part
label L4
jecifa type, Z, W, L7 Call general unification if needed
push tstr~Z, r(h), 1 if no operations are needed, store the top
of the structure
jump L5 Jump to the recursive part
label L5 Start of the recursive part (write-mode)
push ., r(h), 1 Put the value of the feature featl
push ., r(h), 1 Put the value of the feature feat2
: Build all substructures in the same way
jump L3
label L3 End of the unification

FIGURE 11 The most generic codefor V' =T when T has substructures
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FIGURE 12 2-streamed unification

by conditional branches as shown in Figure 12. 2-streamed unification
code makes write-mode unification more efficient because checking the
value of R is much efficient than checking a tag on a cell, which includes
memory access and dereferencing, 2.

Optimization to this code can be done in various ways. Suppose that
the type of T satisfies conditions Final, Fized_NF', Fized_Approp, de-
scribed in Section 1.5. These three conditions indicate that the result of
the unified structure is partly predictable in compilation time. Thus the
operations that uses the result type and feature offsets, which used to be
retrieved from type table, can be reduced to operations with constant
values, when the appropriate condition is true. An example of optimiza-
tion on a unification code for TFS with substructures is shown in the
following list.

Original Code Optimized Code Condition
deref vV, W, X deref vV, W, X
switch tstr, X, L1, L2, switch tstr, X, L1, L2,
fail fail
label L2 label L2
exttype X, Y exttype X, Y

continued on next page

2Note that the introduction of 2-streamed unification makes it difficult to direct
mapping from abstract machine instructions in LiL.FeS-1 to those in LiLFeS-IL.
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Original Code Optimized Code Condition
coerce Y, type, Z, fail coerchk Y, type, fail Final
jump eq, Y, Z, L6 jump eq, Y, type, fail Final
jccifa Y, Z, W, L7 jccifa Y, type, W, L7
trail W trail W
move tstr~Z, [W] move tstr-type, [W]
jump L6 jump L6
label L7 label L7
deref W, W deref W, W
label L6 label L6
offset Z, featl\, 01 Fized_NF
adda W, 01, Vi adda w, 1, Vi Fized_NF
offset Z, feat2\, 02 Fized_NF
adda W, 02, V2 adda W, 2, V1 Fized_NF
jump L3 jump L3
label L1 label L1
exttype X, Y’ exttype X, Y’
coerce Y’, type, Z, fail coerchk Y’, type, fail Final
trail W trail W
move r(h), [W] move r(h), [W]
jump ne, type, Z, L4 Final
push tstritype, r(h), 1 push tstr-type, r(h), 1
jump L5 jump L5
label L4
jecifa type, Z, W, L7 Fized_NF and

Fized_Approp
push tstr°Z, r(h), 1 Final
jump L5 Final
label L5 label L5
push vevey r(h), 1 push vevy, r(h), 1
push ..., r(h), 1 push ..., r(h), 1
jump L3 jump L3
label L3 label L3

Another optimization case is when the type of T satisfies conditions
Preserve_StrType, Preserve_NF', Preserve_Approp. These three condi-
tions indicate that the compiling unification does not affect to some
elements of the unifying TFS. This means that instructions for chang-
ing these elements can be removed without any problem. An example of
optimization on a unification code for TFS with substructure is shown
in the following list.

Original Code Optimized Code Condition
deref vV, W, X deref V, W, X
switch tstr, X, L1, L2, switch tstr, X, L1, L2,
fail fail

continued on next page
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Original Code

Optimized Code Condition

label L2

exttype X, Y

coerce Y, type, Z, fail
jump eq, Y, Z, L6
jccifa Y, Z, W, L7

trail W

move tstr~Z, [W]
jump L6

label L7

deref W, W

label L6

offset Z, featl\, 01
adda W, 01, V1

gffset Z, feat2\, 02
adda W, 02, V2

jump L3

label L1

exttype X, Y’

coerce Y’, type, Z, fail
trail W

move r(h), [W]

jump ne, type, Z, L4
push tstr type, r(h), 1
jump L5

label L4

jecifa type, Z, W, L7
push tstr~Z, r(h), 1
jump L5
label L5
push

push

., r(h), 1
., r(h), 1

5ump L3
label L3

label L2
exttype X, Y
coerchk Y, type, fail Preserve_StrType
Preserve_StrType
Preserve_NF
and Pre-
serve_Approp
Preserve_StrType
Preserve_StrType
jump L6
label L7

Preserve_NF

label L6

offset Z, featl\, 01
adda W, 01, V1
sffset Z, feat2\, 02
adda W, 02, Vi1
jump L3

label L1

exttype X, Y’
coerce Y’, type, Z, fail

trail W
move r(h), [W]
jump ne, type, Z, L4 Final

push tstr-type, r(h), 1
jump L5

label L4

jecifa type, Z, W, L7
push tstr~Z, r(h), 1
jump L5

label L5

push ., r(h), 1
push ., r(h), 1

jump L3
label L3

You can see that optimizations in these examples are also based
on information from the static analyzers. It is the combination of the
deep static analysis and an optimizable fine-grained instruction set that
enables optimization of the unification routine to this extent.

1.7 Evaluation

This section evaluates the performance of the LiLFeS-I system through
parsing tasks with the LinGO grammar. The current implementation
of the compiler generates Pentium assembly code, and the following
experiments are performed on Intel Pentium III 550 MHz.

Table 2 shows the performance of the LiLFeS-I system compared to
the LiLFeS-1 system and LKB. We used naive parser in the parsing test
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| LiLFeS-T  LiLFeS-1 LKB

csli 0.30 0.62 0.17

Total time (sec) aged 1.19 2.33 0.65
fuse 8.53 12.46 2.85

csli 47,782 47,782 476

etasks aged 186,813 186,813 1,635
fuse | 1,160,797 1,160,797 5,946

csli 5,724 5,724 222

stasks aged 25,006 25,006 776
fuse 144,528 144,528 2,695

csli 159,273 77,067 2,800

etasks/sec aged 156,895 80,177 2,515
fuse 136,084 93,162 2,359

csli 19,080 9,232 1,305

stasks/sec  aged 21,013 10,732 1,194
fuse 16,943 11,599 945

TABLE 2 Evaluation of the LiLFeS-I system

LiLFeS-I LiLFeS-I LiLFeS-1

w/ analyzers w/o analyzers
Total Time (sec) csli 0.30 0.48 0.62
etasks/sec  csli 159,273 99,546 77,067
stasks/sec  csli 19,080 11,925 9,232

TABLE 3 Evaluation of the optimization

of LiLFeS systems 2. In the results, LiLFeS-Il achieved a speedup of a
factor of 1.5 to 2 from LiLFeS-1. Since the parsing algorithms are the
same, this speedup is obtained by the efficiency of the LiLFeS-I system.

Due to the difference of parsing algorithm, we cannot directly com-
pare the efficiency of unification between LiLFeS-T and LkB. However,
the etasks/sec and stasks/sec give us information on unification effi-
ciency. Even LiLFeS-1 have stasks/sec far better than LkB, LiLFeS-T
outperforms LiLFeS-1 in all testsuits.

Table 2 shows the performance obtained by the optimization tech-
niques. The entry “LiLFeS-T w/ analyzers” shows performance of fully
optimized code, and “LiLFeS-T w/o analyzers” shows performance of

3Since the naive parser uses different factoring algorithm from the naive parser in
Torisawa’s chapter, the parsers’ performance is slightly different.
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generated code without any static analyzers (In other words, a simple-
minded native-code compiler of LiLFeS). As you can see, performance of
LiLFeS-T gets much worse without analyzers and gets nearer to the per-
formance of LiLFeS-1. From this result we can say that a simple-minded
native-code compilation is not effective for the performance, and exten-
sive optimization on the compiled code is indispensable to achieve high
efficiency.

1.8 Conclusion

The native-code compilation of LiLFeS enables generating efficient code
for feature structure unification. First, a fine-grained instruction set is
proposed to remove redundancy of abstract machine code. Second, anal-
yses of type hierarchy and data flow make further elimination of useless
conditional branches in the compiled code. Evaluation with the LinGO
grammar reports the improvement of parsing speed by a factor of 1.5
to 2 compared to the LiLFeS byte-code emulator. Integrated with other
optimization techniques (Torisawa et al., 2000), LiLFeS achieves efficient
processing with unification-based formalisms, such as HPSG.
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LiLFeS Instruction set
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Basic Instructions

Instruction Meaning
move X,Y Move X to Y.
push X,Y,N Push X on stack with stack pointer Y
and post-increment N.
adda X,N,Y Add an address offset. Advance the

pointer X by N cells forward (backward
if N<0) and store the result in Z.

switch Tag,X,LV,LT,LF

jump Cond,X,Y,L

Three-way branch; branch to LV, LT, LF
depending on whether the tag of X is
tvar, Tag, or any other value.

Jump to L if Cond is satisfied between
X and Y.

jump L Jump unconditionally to L.

label L L is a branch destination.

procedure P Mark the beginning of a procedure P.
call P Call the procedure P.

execute P Jump to the procedure P.

return Return from a procedure call.

Complex Instructions

Instruction

Meaning

unify X,Y,Tx,Ty,L

General Unification of X and Y, branch
to L if fail. The extra parameters Tx
and Ty give information to improve the
translation (They are not needed for
correctness).

allocate X

deallocate X

Create an environment of size N on the
local stack.

Remove the top-most environment
from the local stack.

choice 1/N,Reglist,L
choice I/N,Reglist,L
(I1<I<N)

choice N/N,RegList,L

cut X

Create a choice point containing the
registers listed in ReglList and set the
retry address to L.

Restore the argument registers listed in
RegList from the current choice point,
and modify the retry address to L.
Restore the argument registers listed in
RegList from the current choice point,
and pop the current choice point from
the choice point stack.

Make the choice point pointed to by X
the new top of the choice point stack.

TABLE 4 The Instruction Set in LiLFeS-I (1) Imported Instructions from

BAM




LILFES INSTRUCTION SET / 25

Memory Operations

Instruction

Meaning

deref X,Y,Z

deref X,Z

Dereference X and store the result and
its pointer to Z and Y, respectively®.
Dereference  without preserving a
pointer.

unify_queue X,Y

proceed

Put a pair of values X and Y into Unifi-
cation Queue.

Retrieve a pair of values from Unifica-
tion Queue and performs unification on
them. Return if the queue is empty.

exttype X,T
exttag X,T

coerce T1,T2,T,FaillLabel

extract a type from the value X and
store to T.

extract a t.ag from the value X and
store to T.

access the type table and set the regis-
ter T as the result of the unified type of
T1 and T2. If T1 and T2 are incompat-
ible, this instruction transfers the con-
trol to the label FailLabel.

coerchk T1,T2,FailLabel

jccifa T1,T2,X,Label

jcc T1,T2,X,Label

jec T,X,Label

jecifa T1,T2,X,Label

offset T,F,X

The same as coerce instruction except
the result type is not stored to any reg-
ister.

Check the requirement and perform the
reallocation of the structure pointed by
X, which is caused by the change of the
type from T1 to T2.

A variant of the jccifa instruction,
which does not check the requirement
of reallocation and always execute the
reallocation routine.

Expand the var-tagged cell pointed
by X to the equivalent str-represented
structure.

A variant of jec T2, X, Label, which
checks if the number of features is
changed from the type T1 to the type
T2.

Store the offset of the feature F in the
structure of type T into X.

TABLE 5 The Instruction Set in LiLFeS-T (2) Extended Instructions
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