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ABSTRACT

Various language processing algorithms have been studied to find the algorithm
used in the human language understanding, but no algorithm has proven its
existence by physiological evidences. In such a situation, we should consider
an approach to pursue implementational constraints and preferences from a
computational theory of the language understanding process.

In this paper, we study the model of a short-term memory mechanism of
the human brain suitable for language understanding. Specifically, the following
three topics are pursued.
(1) The exploration of the element necessary for building a short-term mem-
ory mechanism suitable for language understanding in the framework of neural
network
(2) The techniques for an efficient simulation of general pulse neural networks
in a continuous time.
(3) Construction of a primitive simulation of language understanding based on
(1) and (2).

In (1), we clarify the following on the language-understanding neural net-
works. i) A binding problem has to be solved in order to represent a result
of language understanding, and the most promising way is to utilize behavior
in the time domain of a neural network. ii) Requirement of phase arbitration
causes us to build a structural time-series memory on a neural network. iii)
Application of grammatical rules can be implemented in the same way as a
prediction of a time series.

In (2), we studied the event-driven pulse neural network simulator. In or-
der to research complex operations in a time domain, such as phase mediation,
the network simulation with high time precision is demanded, while conven-
tional discrete-time systems is limited in simulation speed. On the other hand,
discrete-event systems have difficulty in handling delayed firing for general neu-
ron models. In this study, we show that our new technique with the second-order
incremental partitioning method enables us to build an event-driven pulse net-
work simulator in general neuron models by numerical calculation of delayed
firing times. We also describe technique for more efficient handling of delayed
firing by filtering redundant calculations of delayed firings.

Finally, in (3), we build a neural network simulation model, which under-
stands the simple sentence of 3 to 4 words, in order to demonstrate the studies of
language understandings in (1) and (2). We discuss our language-understanding
system in various aspects and future directions of research for better under-
standing of a sentence.



論文要旨

人間の言語理解がどのようなアルゴリズムで実現されているかを調べるために、
さまざまな言語処理アルゴリズムが研究されてきたが、生理学的証拠と結びつく
ものは見つかっていない。このような状況では、言語理解過程に関する計算理論
からわかる言語理解メカニズムの実装上の制約や有利な構造を調べるというアプ
ローチが有効である。
本論文では、言語理解に適した人間の短期記憶機構のモデルと、そのシミュレー

ションに必要な技術について提案する。具体的には、以下の３項目についての研
究を行う。
(1) 言語理解に適した短期記憶機構を神経回路網で構築するときに必要となる要
素の探究
(2) 連続時間での高速かつ一般的なパルス神経回路網シミュレーション技術
(3) (1) 及び (2) を利用した、言語理解の原始的なシミュレーション
ここで (1) については、言語を取り扱う神経回路網が備えているべき要素につ

いて、次のようなことを明らかにした。i) 言語理解の結果を表現するには束縛問
題を解決することが必要であり、そのためには神経回路網の時間領域での振る舞
いを利用することが最も有望であること。ii) 位相調停を実現するために、構造
的な時系列記憶システムが構築されるべきであること。iii) 時系列予測の形式で
文法規則の適用が実装できること。
また、(2) に関しては、イベント離散方式によるパルス神経回路網シミュレー

ション方式を研究した。位相調停など複雑な時間領域での操作を研究するために
必要となる、時間精度の高い回路網シミュレーションは、時間離散方式による従
来の手法ではシミュレーション速度に限界があった。一方、イベント離散方式に
は一般的なニューロンモデルに対し遅延発火が扱えないという問題があった。本
研究で提案する二次漸進分割法は、遅延発火を解析的に計算することにより、一
般的なニューロンモデルに対してもイベント離散方式でパルス回路網シミュレー
ションが構築できることを示す。また、冗長な遅延発火計算を検出することで遅
延発火の処理を高速化する手法についても述べる。
そして、(3) においては、(1) 及び (2) の研究を例証するために、３～４単語

程度の単純な文を理解する神経回路網シミュレーションを構築する。ここで構築
した言語理解システムをさまざまな側面から検討し、よりよい文の理解のために
研究すべき方向について考察する。
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Chapter 1

Introduction

We dream, if a computer could understand language, as humans do. No more

than a dream, at least up to now. At present, computers cannot see meanings.

Since language understanding is to obtain meanings from a sentence, nothing

can be understood without meanings. In these days, elaborate computer pro-

grams can correctly deal with grammars, and can even play language games

with us by juggling words. But still they never understand languages. It is

impossible; until, at least, they can handle meanings.

What, however, is a meaning, in the first place? Although many studies are

trying to describe meanings (or ‘semantics’) by symbolic systems, they do not

tell us what is understanding. Even if we made a program to convert from a

symbolic system (language) to another symbolic system (semantic representa-

tion) [35, 31, 34], we couldn’t say the program understands something. Some

other studies try to emulate semantic behavior in language by using statis-

tics and thesaurus, achieving a higher precision of natural language processing
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[23, 25]. However, it is far from understanding language.

One approach to know meanings is to investigate how a meaning is handled

by human beings. We know it happens nowhere but in the brain, the seat of

the thought, memory and consciousness. The brain, which can understand a

sentence, is able to associate the sentence with the brain’s surrounding world,

sensory input and experience. This association should be a meaning, what the

current computers don’t have. The way of making associations is unique to the

architecture of the brain; we can pursue the mechanism to achieve our dream.

Due to the high complexity of the brain, the physiological analysis of the

brain does not reach the representation and handling of meanings. The long

history of brain science has succeeded to elucidate shallow parts of the brain

function, such as sensory analysis and motor control mechanisms [4]. Recent

studies enlightened more deeper parts of the animal brain, such as place-coding

in the rat hippocampus [39]. However, since the meanings and languages are

in the deepest part in the human brain, our knowledge is too little to see the

mechanism.

Here we should come back to our starting point, language. Language is

an expression of a meaning in the brain, which has evolved along with the

human beings over thousands of years. Structures, constructions, and contents

of sentences are all the reflection of the brain mechanism of meanings. It is

said that the language also reflects cognitive frameworks [56]. Language gives

us both requirements and clues to the meanings in the brain; they can be the

key to solve the mechanism of meanings. The previous research to build a

language-processing model on a brain-like architecture [8, 18] lacks this point
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of view: the model must be able to represent a meaning carried by a language.

In this dissertation, we pursue the goal by constructing a minimal model of

language understanding in the human brain, focusing on its short-term memory.

When a person reads or listens to a text or discourse, short-term memory plays

a critical role in storing the intermediate and final products of his/her com-

putation, as he/she constructs and integrates a meaning representation from a

stream of successive words from a text or discourse. In addition, the short-term

memory can also be viewed as the pool of operational resources that perform

the symbolic computations and thereby generate the intermediate and final

meaning representation [22]. Language poses requirements to the capability of

the memory mechanism; such a mechanism should be able to keep meaning

representations and compute meanings from the stream of words.

How is the meaning represented in the brain? How is the language under-

stood, that is, how does the brain construct a representation of a meaning from

a sentence? Although it is impossible to construct a perfect model, we think

that our goal is supported by not only the model itself but also the process of

the model construction.

1.1 Position of This Study in the Research Program

Studies in a large and deep research domain, such as the human language under-

standing mechanism, need concrete research programs to support each other;

otherwise, the studies rarely contribute to the domain.

Marr’s research program of the process of vision [36] is a good starting point

to consider the research program of language understanding. He proposed three

12



Computational Theory What is the goal of the computation, why is the

goal appropriate, and what is the logic of the

accomplishable strategy?

Representation and Algorithm How can the computational theory be realized?

In particular, what is the representation of its

input and output? What is an algorithm for the

conversion?

Hardware Implementation How are the representation and algorithm ma-

terialized?

Table 1.1: Three levels required to describe a machine that performs an infor-

mation processing task, proposed in Marr’s research program [36].

levels to describe of a machine that performs an information processing task,

as shown in Table 1.1. The first level, computational theory, concerns what

should be performed in the process, and which principles should be satisfied

by the process and its input/output. The second level, representation and

algorithm, concerns how the input/output of the process is represented, and

what procedure processes the representation to achieve the principles studied

in the first level. The third level, hardware implementation, concerns the device

and mechanism to realize the representation and algorithm studied in the second

level.

A computational theory is described with various representations and algo-

rithms, and an algorithm is materialized by various implementations. Neverthe-

less, we first need a computational theory of the domain of interest; otherwise

13



we cannot evaluate achievements of the algorithms. Human vision is an imple-

mentation of a computational theory of vision processing, which looks easy but

involves complex calculations to solve difficulties. Study of the human visual

cortex (an implementation) will hardly reveal anything without knowledge of

the difficulties in the algorithm of vision processing; study of a visual processing

algorithm cannot be evaluated without a computational theory to be achieved.

Marr claims that the human vision should be studied from the upper level

to the lower one. First, a computational theory of vision should be clearly de-

clared, without concerning the actual algorithm and representation. Thereafter,

the representations and algorithms for the theory should be studied; through

this study, we know the difficulties of the process and ways to solve the difficul-

ties. Then we can study the implementation to see which algorithm and which

representation are constructed on the human vision mechanism. In the domain

of vision processing, this approach is successfully revealing the mechanisms of

visual cognition. The study of a vision processing algorithm has shown that

efficient vision processing consists of a series of stages of algorithms that calcu-

late from local features to global features; this clarified the role of the layered

structure of neurons in the visual cortex, in which later layers respond to more

global features [36, 3].

The same research program has been being tried in the domain of human

language ability. Researchers of linguistics have tried to clarify the compu-

tational theory of language [7, 26, 42]. The representations and algorithms

are studied in computational linguistics, to successfully show various efficient

algorithms of linguistic computation [24, 49, 57, 48].
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However, it is not sure that the research of language goes well with this

research program as the research of vision does. Although current studies sup-

pose that a linguistic process is divided into several stages as in the process

of vision, researchers of neurolinguistics are still unable to see the evidences of

the staged processing in the brain. We have to face the possibility that the

cerebral implementation of human language processing performs at so different

stages of processing from our research that we cannot easily associate the im-

plementation to the studied algorithms. If this is the case, how can we reach

the implementation model of human language ability?

Our idea is to pursue the relation between the first level and the third level.

Even if we have no knowledge of the algorithms and representations of a pro-

cess, we are still able to suggest a possible implementation from the required

properties of the process. If a corresponding mechanism to the suggested imple-

mentation is found in the human brain, it will help the research on the second

level by narrowing possibilities of the representation and algorithm used in the

brain.

We also claim that this approach should be accompanied with computa-

tional simulation of the implementation. Because of the inherent complexity of

language processing, representation on the third level will possibly be incom-

prehensible, unlike the representation on the first and second levels. Only the

computational simulation can reveal the implication of the theory in the third

level; without simulation, this approach will be difficult to make an impact on

the research on the second level

This dissertation consists of three parts. The first part, Chapter 3, explores
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the requirement of the process to pursue the plausible way of implementa-

tion and mechanisms. The second part, Chapter 4, concerns the simulation

techniques of a neural network with high temporal precision. The third part,

Chapter 5 describes a design and simulation experiments of a neural network

language understanding mechanism inspired by the first part.

We believe this series of studies contributes the research of human lan-

guage ability. The requirement discussed in Chapter 3 suggests the existence

of a global mechanism over the cerebral portion of language processing, despite

the evasion of a global property in the research of connectionist models. The

simulation techniques presented in Chapter 3 lay a foundation of a precise,

efficient, and large-scale simulation of pulsed neural networks, which is a con-

vincing framework of the implementation of human language ability. Moreover,

the simulation experiments in Chapter 5 lead us to the fruitful discussions of

possible implementations and algorithms of the human language ability.

1.2 Exploration of the Requirements

We first explore requirements of possible implementations for the language un-

derstanding process in the brain. In Chapter 3, we point out that the repre-

sentation of bindings, an important part of the meanings, demands temporal

coding. A binding is a relation of an attribute and an object. For example, a

sentence ‘John loves Mary’ is supposed to have two bindings, ‘John — lover’

and ‘Mary — beloved’. Since we make a clear distinction between the bindings

and another set of bindings, ‘Mary — lover’ and ‘John — beloved’, the binding

should be an important part of the meanings; thus we assume bindings should
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be represented in the brain. However, this is not an easy task for neural network

architectures. We argue a possible mechanism of a binding in the brain, and

state an advantage of temporal coding using oscillation phases.

Following that, we pursue the implementation of language understanding

under an assumption of temporal coding. We discuss that a special mechanism

is required to manage inputs to the temporal coding, which we call phase ar-

bitration. Since a sentence input to the brain is a temporal sequence of words,

direct connections from the input to the temporal coding of bindings causes

unexpected collisions in the pulse timings (phases). Thus the brain should have

some mechanism to arbitrate phases for a stable construction of temporal cod-

ing from a sentence input. We discuss that the phase arbitration is hard to be

implemented by local mechanisms, and claim the usage of a global signal in the

phase arbitration mechanism, despite the evasion of a global property in the

research of connectionist models [45].

1.3 Simulation Techniques

We also focus on the simulation techniques for our model. It is an important

step to validate a model, at least empirically, by a computer simulation. Since

our exploration discovers the importance of the temporal aspects of neural

behaviors, we need efficient simulation techniques for a high temporal precision,

being capable of handling general neuron models. A discrete-time simulation

framework, which is used in most neural network simulators, loses efficiency

for a high temporal precision. On the other hand, a discrete-event simulation

framework provides a high temporal precision and is suitable for the simulation
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of pulsed neural networks. However, existing discrete-event simulators rely on

simple neuron models, because delayed firings of general neuron models pose

difficulty on a discrete-event framework.

In Chapter 4, we introduce several techniques for a discrete-event pulsed

network simulator. We present a second-order incremental partitioning method,

which is able to solve delayed firings for any Spike-Response neuron model with

finite discontinuity. Moreover, in order to achieve efficiency at the handling of

delayed firings, we developed the gradient limit checking technique. We show

that the resulting neural network simulator, Punnets, is able to simulate a

large-scale network efficiently.

1.4 Language-Understanding Simulation

Finally, in Chapter 5, we design a small neural network model that converts

a simple input sentence into a set of binding representation in the temporal

coding, and test the model on the simulation. The purpose of the simulation is

to validate the requirements explored in Chapter 3. This network model can be

an important step towards a language-understanding neural network model, be-

cause binding representations are a critical portion of semantic representations

in our assumption. The experiments on the network model show that a neural

network model can be constructed within the requirements and preferences we

explored in Chapter 3. Although the model is too small to discuss the linguis-

tic problems, the following discussion reveals some important differences of the

model from human language understanding, and points to further directions of

research.
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Chapter 2

Background

As background matters we first introduce related studies in two areas, connec-

tionist approaches for language processing and the temporal coding of neurons.

Thereafter we describe a brief overview of the Spike-Response model, which is

a general neuron model for pulsed neural networks.

2.1 Related Work

In this section we give a brief overview of some relevant studies. First we have a

glance on the history of the temporal coding on neurons. After that, we survey

the connectionist approaches for natural language processing.

2.1.1 Temporal Coding on Neurons

It is known that neurons, the cells constituting a brain, transmit information

by voltage pulses of membrane potential [14]. Since all pulses of a given neuron
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look alike, the form of pulses does not carry any information. Rather, it is the

number and the timing of pulses which matter.

Perceptron, an early neuron model in artificial neural networks, uses binary

output, which represents all-or-nothing nature of a pulse. A learning algorithm

called Perceptron Convergence Process is proposed, but this algorithm has a

limited power of learning [38]. More recently, generalized delta rule, also called

as error back-propagation, is developed, which uses a sigmoidal gate function

to provide a continous value as an output of a neuron [45]. This continuous

value is supposed as a ‘rate-coded’ value, a mean firing rate of a neuron or a

group of neurons. Since this model has an ability to learn a complex function,

it is applied to many complex problems.

Recently, researchers have started focusing on a temporal aspect of the

neuron behavior. Although the rate-coded model was powerful, it used only a

number of spikes as information and ignored the timing information of pulses.

If it is used asynchronously, with analog values encoded by a temporal pattern

of firing times, a spiking neuron has in principle not only more computational

power than a perceptron neuron, but also more computational power than a

sigmoidal gate neuron [30]. Temporal aspect of coding is also said to be used

in various other domains in the human brain [12].

One notable work is SHRUTI [46], which proved that the temporal coding

can represent dynamic bindings. This system is capable of reflexive reasoning

in a parallel way, representing multiple binding at the same time. However, the

system uses various artificial nodes, and it is not clear how the connections be-

tween nodes are learned. Moreover, phases are determined artificially, although
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n-th (n+1)-th (n+k)-th

Input window of size k+1

Figure 2.1: Spatial Configuration of a Neural Network. A sequence of linguistic

elements (such as letters and words) are spatially extracted as input to a feed-

forward network. Note that the input is limited by the (k + 1)-sized window,

so that no relation over the window size can be captured.

it is a critical problem in the brain.

2.1.2 Connectionist Approaches for Language Processing

Several studies tackle to the problem of linguistic processing by an connectionist

approach, although they do not reach to the semantics. In this section, we have

a brief overview on two representational studies.
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Output
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Figure 2.2: Simple Recurrent Network Model by Elman, in which activations

are copied from hidden layer to context layer.

Simple Recurrent Network

Natural language processing has been one of the most difficult challenges for

an connectionist approach. Spatial configuration, as shown in Figure 2.1, was

used in earlier studies, such as pronunciation estimation from spelling [11].

However, the configuration had an substantial problem for application to lan-

guage processing. The width of the input is constant, that is, the network can

never handle relation beyond the constant-sized window, such as a subject-verb

agreement with a long relative clause.

A notion of time was introduced to deal with this problem. Elman applied

to language processing the Simple Recurrent Network [8] (in Figure 2.2), which

uses a copy of hidden layer to represent its context. Then the word sequence is

input to the network, one word at a time. The network is trained to predict the

next word from the current stream of input words. He claims that this network

can discover word segmentation and lexical classes [8], word clustering [9] and
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grammar with sentence embedding sentence [10].

This configuration (we call temporal configuration) has an advantage over

spatial configuration in the following points. First, the context layer works as a

memory of the past inputs. Although the context layer seems to keep only the

previous state of the network, it is calculated using one more previous state.

By recursion, the context layer becomes a memory, which can represent longer

dependence of temporal events.

The second advantage of the temporal configuration is the resemblence of

the processing to the language understanding of human. We cannot say that

an SRN understands a sentence in any way, since the network is just trained

for the assigned task, which is far from understanding. However, it is sure

that a person processes a sentence in temporally divided way. Listening to a

narration, she/he receives a sentence as a stream of sound. Reading a text,

she/he sequentially picks up words by eyes. It is apparent that a person stores

previous readings in a memory to understand a sentence, as an SRN does.

However, we cannot use this model directly for sentence understanding. We

discuss this point in Chapter 3.

Henderson’s Connectionist Parsers

Henderson extended the idea of SHRUTI, that is, to introduce temporal syn-

chrony as a medium of structural information. His first work [17] shows that the

reflexive reasoning of the SHRUTI system can applied to the parsing problem.

His connectionist parser is based on Structure Unification Grammar and capa-

ble of parsing sentences, in which he argues that constraints incorporated by
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the connectionist architecture helps prediction of sentence acceptability. The

parser receives each word for one cycle, and emits a tree fragment as soon as it

is completed. When the parsing finishes, all the tree fragments are emitted so

that the fragments constitutes the full parsing tree.

He also applied the idea of SHRUTI to a network which learns to parse

[18]. Backpropagation through time [54] is used to train the Simple Synchrony

Network, which is like Elman’s SRN with synchrony representation, to produce

SUG parsing trees from a sequence of words. He reports that the parser achieved

high performance than statistical parsers when trained with relatively small

corpus.

Both networks are targetted to the syntactic property of the language and

they are not intended as a language understanding model. Even if we regard

the tree fragments are meaning representation, the connectionist parser ‘forgets’

about the emitted tree fragment, and the parser memory becomes empty as the

parsing finishes. Our assumption, the language has a simple association to the

short-term memory for meaning, contradicts such a mechanism. Moreover, the

learning work uses a supervised learning rule, and there is no discussion on how

the human brain learns to understand sentences.

2.2 Common Definitions

In this dissertation, we model the language understanding in a form of neural

networks. For readability we use the common notations and definitions for the

network modeling. In this section we describe a spike-response model of a pulsed

neuron, following the definition in [14].
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Figure 2.3: Sample η Kernel Function.

2.2.1 Spike Response Model

The state of neuron i is described by a state variable ui, which may be in-

terpreted as the electrical membrane potential of a neuron in the biological

context. The neuron is said to fire, if ui reaches a threshold θ. The moment of

threshold crossing defines the firing time t
(f)
i , which means the fth firing time

of neuron i. The set of all firing times of neuron i is denoted by

Fi = {t(f)
i ; 1 ≤ f ≤ n} = {t|ui(t) = θ} (2.1)

Two different processes contribute to the value of the state variable ui.
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Figure 2.4: Sample ε Kernel Function

First, immediately after firing an output spike at t
(f)
i , the variable ui is low-

ered or ‘reset.’ Mathematically, this is done by adding a negative contribution

ηi(t − t
(f)
i ) to the state variable ui. The kernel ηi(s) vanishes for s ≤ 0 and

decays to zero for s →∞; See the sample in the Figure 2.3.

Second, the model neuron may receive input from presynaptic neurons j ∈
Γi where

Γi = {j|j presynaptic to i}. (2.2)

A presynaptic spike at time t
(f)
j increases (or decreases) the state ui of neuron

i for t > t
(f)
j by an amount wijεij(t − tj(f)). The weight wij is a factor which
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accounts for the strength of the connection. An example of an εij function is

shown in Figure 2.4. The effect of a presynaptic spike may be positive (exci-

tatory) or negative (inhibitory). Because of causality, the kernel εij(s) must

vanish for s ≤ 0. A transmission delay may be included in the definition of εij ;

see Figure 2.4.

The state ui(t) of model neuron i at time t is given by the linear superpo-

sition of all contributions,

ui(t) =
∑

t
(f)
i ∈Fi

ηi(t− t
(f)
i ) +

∑

j∈Γi

∑

t
(f)
j ∈Fj

wijεij(t− t
(f)
j ) (2.3)

An interpretation of the terms on the right-hand side of (2.3) is straightfor-

ward. The ηi contribution describes the response of neuron i to its own spikes.

The εij kernels model the neurons response to presynaptic spikes. We will refer

to (2.1), (2.2), and (2.3) as the Spike Response Model (SRM). In the biological

context, the state variable ui may be interpreted as the electrical membrane

potential. The kernels εij are the postsynaptic potentials and ηi accounts for

neuronal refractoriness.

2.2.2 Common Variants of the Spike Response Model

We often use a variant of the Spike Response Model. In the following we show

some common variants of the model, which is used throughout this dissertation.

Short-term memory We sometimes assume that only the last firing con-

tributes to refractoriness. In this case, we can simplify (2.3) slightly and only
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keep the influence of the most recent spike in th sum over the η contributions.

Formally, we make the replacement

∑

t
(f)
i ∈Fi

ηi(t− t
(f)
i ) −→ η(t− t̂i) (2.4)

where t̂i < t denotes the most recent firing of neuron i. We refer to this sim-

plification as a neuron with short term memory. Instead of (2.3), the membrane

potential of neuron i is now

ui(t) = η(t− t̂i) +
∑

j∈Γi

∑

t
(f)
j ∈Fj

wijεij(t− t
(f)
j ) . (2.5)

External input External input in the neuron model is often considered. In

addition to (or, instead of) spike input from other neurons, a neuron may receive

an analog input current Iext(t), for example, from a non-spiking sensory neuron.

In this case, we add on the right-hand side of (2.3) a term

hext(t) =
∫ ∞

0
ε̃(s)Iext(t− s)ds . (2.6)

Here ε̃ is another kernel, which describes the response of the membrane

potential to an external input pulse. As a notational convenience, we introduce

a new variable h which summarizes all contributions from other neurons and

from external sources

h(t) =
∑

j∈Γi

∑

t
(f)
j ∈Fj

wijεij(t− t
(f)
j ) + hext(t) . (2.7)

28



The membrane potential of a neuron with a short term memory is then

simply

ui(t) = η(t− t̂i) + h(t) . (2.8)

In this dissertation, we suppose tue membrane potential of neurons is mod-

eled by the equation (2.8).
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Chapter 3

Phase Arbitration for Binding

Representation in Language

Understanding

This chapter explores a mechanism of representation in the human brain from a

viewpoint of language understanding. We point out that, in order to represent

a meaning explicitly on a neural network, a memory mechanism of the network

should have some coding more complex than the traditional localist binary

representation, preferably a coding with oscillation phases. We also pursue a

mechanism required to compose the coding from a linguistic input, and claim

an existence of a global mechanism to arbitrate phases.

Discussion in this chapter is rather abstracted. We try to find a common

feature of mechanisms that explains the process of language understanding. It

turns into a clue to inspecting the human brain for seeking the implementation
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of the language understanding process.

3.1 Introduction

Memory plays a critical role in human language processing. Since a person

cannot process long sentences at once, one divides a sentence into words (or

some other units) and processes them word by word, while keeping partially

processed results in the brain; it is memory that keeps such information over

time. Moreover, the semantic information of the sentence is also supposed

to be stored in memory with the partial results. Thus, a model of sentence

understanding cannot be described without a model of memory. In other words,

we are able to use a sentence-understanding task to justify a model of the human

memory mechanism.

However, past studies of natural language processing based on artificial neu-

ral networks are not enough to explain the memory mechanism used in sentence

understanding. For example, a memory model in a simple recurrent network [8]

suffers from a feature binding problem restricting capacity of semantic represen-

tation. Although the temporal coding as in Henderson’s connectionist parser

[17] seems promising, it is still an important open problem to pursue a better

model of human memory along this line.

In this chapter, we explore models of the memory mechanism in the human

brain from a viewpoint of sentence understanding. Especially, we point out

an advantage of the temporal coding in representing binding information, and

the necessity of phase arbitration, a mechanism that allocates an unused pulse

phase to a newly memorized item.
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We first show that traditional neural networks are prevented from achieving

the task of sentence understanding by the feature binding problem. We then

investigate possible sources of complexity to be added to the neural network,

and show an advantage of temporal complexity. Further, we show the neces-

sity of the phase arbitration in a network involving temporal complexity. We

also discuss two models of phase arbitration mechanism, a local model and a

global model, and show that the local model is inappropriate to perform the

arbitration.

In Section 3.2, the sentence-understanding task is outlined. In Section 3.3,

we explain the feature binding problem and possible solutions by various cod-

ings. Section 3.4 shows the necessity of the phase arbitration mechanism for

temporal coding. Finally, we discuss implementations of the mechanism and its

implications in Section 3.5.

3.2 Computational Theory of Language Understand-

ing

At the beginning, we assume the computational theory of language understand-

ing. As described in Section 1.1, we study the possibilities of implementation

from the theoretical requirement of language understanding. The computa-

tional theory of the language understanding gives the property of the process,

which should be satisfied by any algorithm performing language understanding

process. The computational theory we discuss in this section is not a complete

one, but focused on a critical part of the theory, feature binding and memory.
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Figure 3.1: Language understanding as a dynamical system. The figure of the

interconnected nodes represents the language-understanding system.
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Language understanding can be regarded as a process, which takes a linguis-

tic expression as an input and produces its meaning. Here we assume that the

meaning includes associations with the invariants provided by other perceptual

inputs. For example, the process of vision is supposed to extract invariants

from the image, such as objects, colors and shapes; we think that the language

is useful because it can be related to the invariants provided by other percep-

tual inputs. Supposing the brain receives a phrase ‘blue circle’ and produces

its meaning in the brain, the meaning should have association to the output of

the visional process from a scene with a blue circle. We call the representation

of meanings in the brain as semantic representation.

We assume that feature bindings, or simply bindings, are included in the

semantic representation. A meaning usually contains information of relations

between entities or concepts. For example, a meaning of a phrase ‘blue circle’

contains a relation between a concept ‘blue’ and an entity ‘circle’, which has a

clear distinction from the visual scene containing something blue and a colorless

circle. We call this relation binding.

An input of the process is distributed over time. Since a person cannot

receive a long sentence at once, one divides the sentence into some units, possi-

bly words, to receive the whole sentence. Moreover, since one can understand a

sentence without an explicit end-of-input marker, understanding process should

be working all over the time, receiving one unit at a time. In order to integrate

the meaning of the whole sentence, the intermediate and final products of the

language understanding process should be stored in the processor; it should be,

in some form, memorized in the brain. Then we can assume that the intermedi-

ate products should also include bindings and association to perceptual inputs
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as the final product does.

The assumed process is illustrated in Figure 3.1. An implementation of

the external verbal input causes the transition of the state. When the system

receives the last word of the sentence, it is expected that the state contains the

semantic representation of the sentence, including the bindings in the meaning

of the sentence.

In the following, we focus on the representation of the bindings on the im-

plementation of the human brain. In order to consist a part of a semantic

representation, a representation of binding should satisfy the following princi-

ples.

1. Dynamicity. A semantic representation is dynamic, that is, available im-

mediately after understanding. Although static memory mechanism (such

as change of wiring) may concern background knowledge of semantics, it

is too slow to be used in the following processes. A semantic represen-

tation and, consequently, a binding representation should be on a more

dynamic and flexible medium, such as change of electric potential and

functional connectivity. It is expected that the linguistic computation of

a short sentence should be finished within a couple of seconds.

2. Memorability. A semantic representation is memorable in the brain.

Namely, the brain does not understand a sentence without keeping the

semantic representation, including bindings, for a certain period. We re-

quire the period is substantially longer than the time span of understand-

ing process. It is not desirable that a semantic representation acquired

in two seconds is lost in three seconds; we expect it persists for e.g. two
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minutes.

3. Concurrency. The brain can represent multiple bindings at the same time.

A person has an ability to make inference using two or more bindings. We

require that a semantic representation can be used for such an inference,

in other words, concurrent representation of multiple bindings.

4. Generalizability. A binding representation is generalizable to unencoun-

tered bindings using the representation of known entities and bindings. A

language can easily represent and deliver bindings, which the hearer/reader

have never encountered. For example, although few people have heard of

either ‘flying sandwich’, ‘noisy coffee’ or ‘colorless green,’ most of the

people are able to receive the bindings in the phrases (even if difficult

to imagine). We regard that the ability of a language to represent unen-

countered bindings is the source of the generalizability; without it, human

beings cannot communicate new ideas and happenings each other.

Especially the last point constrains a possible coding of a binding represen-

tation, which we pursue in the next section.

3.3 Complexity in Memory Coding

This section pursues binding representations in the brain, based on assump-

tions enumerated in the previous section. The argument is not based on any

presumption of a specific mechanism or coding in the brain, such as distributed

representation [19] and population coding [14], or the push-down stack[44].

Rather, we discuss the conditions, which must be satisfied by any mechanism
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that performs language understanding.

3.3.1 Requirement of Additiveness

Binding representations can be classified into additive ones and multiplicative

ones. If the representation of a binding ‘A = B’ can be composed from an

activity of ‘A’ and that of ‘B’, the representation is called additive. Otherwise,

every binding has a representation depending on a particular activity appearing

only on the certain binding, which is called as multiplicative1.

The generalizability requirement, requirement 4 in Section 3.2, contradicts

the multiplicative representation. If the binding representation depends on a

particular activity for a certain binding, the brain cannot represent a novel

binding; even if it is represented, the brain has no mechanism to decode the

representation, since it is a novel representation for the novel binding. Such

a system loses generalizability, that is, it cannot understand a novel idea in a

sentence.

Thus we can conclude that, in order to perform the sentence-understanding

task, a system has to use additive binding representation. With an appropriate

mechanism, a system with additive representation is able to generalize a novel

idea in a sentence into bindings the system never used before, and still able to

use the unencountered bindings for later inference.

1This does not mean that the additive representation totally excludes non-compositional

representation. For example, a phrase ‘blue cheese’ has a different meaning from the com-

positionally constructed meanings from ‘blue’ and ‘cheese’; such a meaning, which depends

on a specific binding, may use the representation that cannot be decomposed, even in the

additive representation. On the other hand, in the multiplicative representation, any binding

representation cannot be constructed without using binding-specific activity.
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3.3.2 Feature Binding Problem

The additiveness requirement forces us to face with a feature binding problem

[12], as illustrated in Figure 3.2. The recognizer outputs the interpretation of

the scene as a set of binary signals. If the output satisfies binding additiveness,

the interpretation of a scene with two colored objects becomes a superposition of

the representations of two colors and two objects. Then we cannot distinguish

which color is bound to which object in the output; this is called a feature

binding problem.

It should be noted that a distributed representation [19] also suffers from

this problem. We assume that semantic information can be extracted from

the distributed representation; otherwise it cannot be regarded as a semantic

representation. Then, the extraction mechanism is either multiplicative or ad-

ditive, depending on the utilization of binding-specific activity patterns. If the

distributed representation uses such an activity, it is multiplicative, and lose

potential to represent unencountered bindings; otherwise, it is additive, and is

caught by feature binding problem.

Although some people argue that a selective attention mechanism solves the

feature binding problem in the recognition [50], we don’t think the argument is

applicable to the language understanding. Since a relation of a noun phrase and

its case or role is a binding, a simple sentence with a transitive verb contains two

bindings as shown in Figure 3.3. If the selective attention is used to solve the

feature binding, the brain can pay attention to only one binding at a time, which

makes the brain unable to handle the relation between entities in a sentence,

such as John and Mary.
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Figure 3.2: Feature binding problem in a scene recognition. A scene with two

figures, a white circle and a black square, is posed to a recognizer. Because of

additiveness, the output of the system is a superposed representation of ‘white’

and ‘circle’, ‘black’ and ‘square’. However, the output is indistinguishable from

the recognition of another scene, a black circle and a white square.

39



Mary  John  lover  belovedMary  John  lover  beloved
John loves ____John loves ____

Mary  John  lover  belovedMary  John  lover  beloved
____ loves Mary____ loves Mary

Mary  John  lover  belovedMary  John  lover  beloved
Mary loves ____Mary loves ____

Mary  John  lover  belovedMary  John  lover  beloved
____ loves John____ loves John

Mary  John  lover  belovedMary  John  lover  beloved

John loves MaryJohn loves Mary

Mary loves JohnMary loves John

Mary  John  lover  belovedMary  John  lover  beloved

Indistinguishable

= active          = inactive

Figure 3.3: Feature binding problem in a semantic representation. Binding of

an attribute “lover” and a value “John” is represented as simultaneous activ-

ities of “lover” and “John.” However, when we try to represent two binding

relations, “John — lover” and “Mary — beloved,” the activity becomes a mix-

ture of “John,” “Mary,” “lover,” and “beloved,” which is not distinguishable

from another set of binding “Mary — lover” and “John — beloved.” To sim-

plify, we drew this figure with the localist representation, but the problem is

not restricted to this representation.
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Since a person rarely makes such a mistake of dynamic bindings, some in-

herent representation that solves this problem should be used in the brain.

In Section 3.2, we assumed that the bindings are explicitly represented in the

human brain. Moreover, the concurrency requirement, requirement 3 of the

sentence-understanding task, states that the brain can represent multiple bind-

ings at the same time2. It is clear that the brain uses some representation more

complex than a simple set of binary signals, so that the problem is solved.

It is important to explore the representation because the representation

characterizes the algorithm in the brain, and consequently, the mechanism of

language understanding. In the following, we discuss possible sources of com-

plexity to be incorporated into the binding representation.

3.3.3 Solution in Computers

Modern computers represent bindings by a vector of bits. In one case, each

object has its uniquely assigned ID and the ID is expressed in an attribute

representation. In another case, an ID (also called as a marker) is assigned to

each binding so that binding is represented by passing the binding ID between

an attribute representation and an entity representation. Anyway, a vector of

bits (e.g. 32-bit length) is used in the binding representation. Indirect memory

reference is often used in combination, for example, using a chain of references

to represent one binding [2]. This representation makes it possible to keep

additiveness while retaining information of bindings. We agree that this way of

the binding representation is powerful and efficient. It is also discussed that a

2 Otherwise a human cannot understand both two bindings at a time, e.g. “John — lover”

and “Mary — beloved.”
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connectionist model based on a bit-vector binding representation [6].

However, we claim that the human brain does not depend on such a relo-

catable bit-vector representation of bindings. No physiological evidence shows

existence of either trunked signal lines or bit-vector comparators. Instead, ev-

idences point to the opposite direction, in which every signal is assigned an

individual role. Synaptic plasticity [1] seems dependent only on presynaptic

and postsynaptic activity, thus independent of neighborhood activities. Even

if some sort of ID or marker is used to represent the bindings, the ID would be

encoded in a totally different way.

It is worth pursuing the complexity which is used by the brain in a binding

representation. The way of the binding representation characterizes process and

memory of information. It would also be deeply related to the mechanism the

brain associates the external non-verbal inputs to its internal representation,

which constitutes the meaning. In the following, we explore the possible ways

of binding representation used in the brain.

3.3.4 Possible Source of Complexity

Binding representations can be classified into three categories according to the

complexity used in the representation: space, intensity, and time. We argue the

advantage of temporal complexity over other two sources in detail.

Spatial Complexity

The first candidate, spatial complexity, is to use more neurons and synapses to

represent bindings. A simple example is to introduce a neuron for each possible
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binding, such as ‘John=lover’ neuron, ‘Mary=beloved’ neuron and so on. How-

ever, this is obviously ‘multiplicative’ representation and violates additiveness

requirement.

More sophisticated usage of spatial complexity is to represent IDs by bit-

vectors, as just discussed in Section 3.3.3. However, in this dissertation, we

pursue possible binding representations in the brain other than bit-vector en-

coding.

Intensive Complexity

The second candidate, which we name intensive complexity, uses intensity

(strength) of signals to store binding information. In other words, multi- or

continous-valued signals are utilized as a medium of binding representations,

not as a stressed representation of signal appearance. Since a sigmoidal neuron,

a mainstream model of neural networks, uses continuous-valued signals, this

complexity seemed convincing.

Here we discuss two possible ways of utilization. One is to use signal in-

tensity as a shared binding marker. Bound attributes and objects share the

same signal intensity, and different bindings are distinguished by the difference

of the signal intensity. The performance of this representation depends on the

precision of signal levels; if the signal levels are precise enough to keep eight

different levels (including inactiveness), up to seven different bindings can be

represented at the same time.

The other is to use signal intensity as a storage of nested information. Sup-

pose that the signal level x is represented in a value between 0 and 1; we can

43



write down the value in a binary digits, x = 0.x1x2x3x4 · · · (xi ∈ {0, 1}).
These xis can be independent storages. Moreover, it is easy to store nested

information by shift operators. Dividing x by 2 is equivalent to right-shift op-

eration, that is, xi+1 ← xi; Multiplication of x by 2 is the reversal operation.

Combination of these operators can form a push-down stack, which is suitable

for handling nested information.

It is notable that Elman [10] is standing on this point of view. He claims

that a simple recurrent network trained with center-embedding sentences can

generalize the rule to more deeper nestings of center-embeddings, because such

a network learns to store information of the embedding (outer) sentence into

smaller portion of the value range at the beginning of the embedded (inner)

sentence, and to enlarge the portion at the end of the embedded sentence.

This is exactly the utilization of signal value precision as a storage of nested

information.

We, however, claim that the utilization of signal intensity are not suitable

for representing bindings in the brain. In the brain, neurons intercommunicate

by spikes, where every spike from a neuron looks alike [14]. This fact tells that

the information is conveyed not by the strength nor form of the spike, but by

the presence (or absence) and the timing of spikes. There is no reason to add

the intensional complexity for a spike.

Although it is said that density of a group of spikes can convey intensive

information by rate-coding, we claim that binding representation is not likely to

depend on such a coding in the brain. One of the major reasons is the precision.

Since binding detectors in the brain have to obtain signal intensity by taking
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Input A
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(a) Two inputs with almost 
coincident phases.  The de-
tector’s signal level reaches 
the threshold and the detec-
tor fires periodically.

b) Two inputs with diffe-
rent phases.  Detector does 
not fire at all, since its sig-
nal level is always lower 
than the threshold.

Figure 3.4: Phase Coincidence Detection by an Integrate-Fire Neuron.

an average of the spike rate for a time range, the precision of the intensity

gets far from required precision for binding representation. In order to achieve

higher precision, the time range for averaging must be increased; however, it

must not be longer than several hundreds of milliseconds, or the representation

of binding violates the dynamicity requirement, requirement 1 in the sentence-

understanding task, and consequently fails constructing a meaning of a sentence

within a couple of seconds

It is still possible to construct a language-understanding system with inten-

sive complexity to represent bindings. However, it would be a highly complex

and artificial system, far from the human brain. We should pursue another

approach first.

Temporal Complexity

The last candidate, temporal complexity, uses temporal position of signals to

represent binding information. This focuses on dynamic aspects of the neural
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network, while the intensive complexity focuses on static aspects. Regarding a

timing of an activity as another source of continuous value, we can use similar

approaches in the intensive complexity. For example, timing can be seen as

an ID of a binding; this leads us to synchronized firing in order to represent a

binding.

This seems to violate the memorability requirement of the semantic repre-

sentation, since temporally transient activities of neurons cannot be kept over

time. However, periodic activities such as oscillation can stay unchanged for a

certain time. Moreover, a detector of temporal coincidence is easily constructed

by neural devices. A single integrate-and-fire neuron can detect coincidence of

arriving phases (temporal positions of periodic activity) among multiple neu-

rons with high precision [12], as illustrated in Figure 3.4.

From these arguments, we conclude that the temporal complexity is the

first candidate for the brain simulation of the language understanding. In the

following, we consider the coding of bindings using the oscillation phases. Note

that we do not commit any specific pattern of oscillation, any specific delay of

phase coincidence (synchronized or in a specific delay), nor any specific amount

of neurons used to represent an attribute or entity. Any binding coding de-

pending on oscillation phases is subject to the following discussion.

3.3.5 Related Work on Temporal Coding

It was known that temporal coincidence of signals can be used to represent

bindings. Several studies suggested that temporal correlation of activities may

be utilized as a coding in the brain in order to avoid the feature binding problem
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Figure 3.5: Synchrony-based Coding.

[12, 51].

We also have several implementation of the binding representation with tem-

poral coding. One of the simplest implementations is a synchrony-based coding

used in SHRUTI system [46]. In their coding, a neuron oscillating by itself

denotes either an attribute or a value, and synchronization of the oscillation

denotes binding between them (Figure 3.5).

Henderson implemented a connectionist parser based on this coding [17]

and succeeded to make a neural network learn to parse by back-propagation

through time [18]. His architecture, Simple Synchrony Network, is generally

an extension of Simple Recurrent Network by the synchrony-based coding. He

notes that the limitation of the synchrony-based coding, e.g. capacity constraint

caused by lack of phases, can predict human unacceptability of some sentences.

These studies encourage a model of temporal coding as an additional com-

plexity for binding representations, which constitutes a part of a semantic rep-

resentation. However, we should be careful that the time itself is used at the

input of a sentence. In the next section we discuss the influence of the additional
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role of time in the context of language understanding.

3.4 Phase Arbitration Mechanism

Although a network with temporal complexity looks quite promising, we found

that our binding representation cannot be applied directly to the sentence-

understanding task: We have to assign double roles to the time.

In the language understanding process, a sentence is input to the system by

distribution over time. Since the input timing is not synchronized to the inter-

nal oscillation timing used for the binding representation, some synchronization

mechanism seems necessary. It is more difficult than a simple synchronization

of internal oscillation and external signal; in order to avoid accidental binding

between internal oscillation and external signals, the synchronization mecha-

nism has to be able to assign unused phase for the new oscillation caused by the

external input. Moreover, since the phases are a finite resource, it is necessary

to free a used phase, namely, forgetting.

Due to the different assumption of the computational model, existing studies

with temporal coding solve this problem artificially. The SHRUTI system [46]

determines every pulse phase by an external signal, and cannot forget items

unless the systems are reset to the original state. Henderson’s SSN [18] learns to

use an unused phase for a new item, but it is based on the teacher signals in back-

propagation. Moreover, SSN forgets an item when its syntactic requirement

is completed: this contradicts our stance, in which results of the syntactic

processing, such as semantic information, is stored in the working memory.

In this study, we name the allocation of an unused phase as phase arbitration,
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Figure 3.6: Temporal coding without phase arbitration. Two signals (John

and loves) are unbound (not synchronized) in the upper figure, and bound

(synchronized) in the lower figure. This large difference is caused by the subtle

difference of the input timing of ‘loves’.

and pursue the way to implement phase arbitration on a temporal-coding neural

network. Since the phase arbitration mechanism determines the usage of phases,

it will characterize the information processing of the network.

3.4.1 Necessity of Phase Arbitration Mechanism

We need a mechanism to arbitrate phases for stable encoding into temporal

oscillation. The mechanism may be very simple; just a single signal is sufficient

if it is properly generated and used. However, it is certain that we need a

mechanism, which allocates unused phases and assign them to new inputs.
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If a neural network has no such mechanism, phase of signals caused by

an input word becomes dependent on the input timing. In this case, small

turbulence of input timings disturbs the phase to cause collision with another

phase used in the representation, resulting accidental binding representation

(shown in Figure 3.6). This is not practical, because information coded in

oscillation phase becomes unstable. Note that, in our claim, such a mechanism

is necessary not only in the simulation of language understanding but also in the

brain that performs language understanding. The phase arbitration mechanism

is necessary when a language-understanding system uses temporal coding. As

we pointed out in Section 3.3.4, it is highly possible that the brain also uses

temporal coding. It is important to study the phase arbitration mechanism

used in the brain, which characterizes information processing of the brain3.

3.4.2 Implementation of Phase Arbitration

A phase arbitration mechanism can be classified into local and global . If a phase

arbitration mechanism uses some information source globally shared among

temporal-coding neurons, it is global; otherwise, it controls phases by mutual

connections between temporal-coding neurons, and called as local.

Figure 3.7(a) shows an example of a local phase arbitration mechanism. In

the example, memory neurons are mutually connected by inhibitory synapses

so that the accidental binding representation is suppressed. The raise of the

potential of a memory neuron is controlled to be slow in order to cause firing

at just after the inhibitory signals. It is possible that the mutual connections

3Here we do not commit whether the mechanism is innate or acquired. However, even if it

is acquired by learning, it is worth discussing what kind of mechanism is used after acquisition.

50



John

loves

Input

Global signal

John loves

UnboundSuppression

(a) Example of a local phase arbitration mechanism.

John loves

John

loves

Input

Global signal

Phase shift in order to keep the global 
signal pointing to unused phase

(b) Example of a global phase arbitration mechanism.

Figure 3.7: Possible implementations of phase arbitration mechanisms.
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are excitatory, but the base of the idea is the same.

A global phase arbitration mechanism is illustrated in Figure 3.7(b). The

mechanism uses some shared signal that represents a global phase of a network.

Since the signal is used to assign unused phases, it is supposed that the signal

points an unused phase in some way. In this case, when the pointed phase is

used, a phase of either global signal or memory neuron needs to shift so that

the global signal points to a new unused phase.

3.4.3 Problem of Local Phase Arbitration

Intuitively, the local phase arbitration mechanism seems more feasible than the

global one, because of the distributed style of the information processing in

the brain. It is said that the advantage of the connectionist architecture is

its parallel and distributed processing manner [19], while the introduction of a

global signal seems to sacrifice the parallel processing power.

However, we found that the local mechanism is not suitable for the phase

arbitration. When we tried to implement the local mechanism as described

in Section 3.4.2, we have to face a number of obstacles. One problem is the

difficulty to decide the raising speed of the potential caused by external input.

If it is too fast, the firing cannot be controlled during consecutive suppressions;

if too slow, dynamicity is lost.

Another problem is the accumulation of inhibition/excitation. When many

activities are overlaid in an additive representation, inhibition/excitation caused

by mutual connections is accumulated to cause prohibition of necessary activ-

ity or induction of unrelated activity (See Figure 3.8. Apart from the problem,
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Figure 3.8: Problem of Local Phase Arbitration. Four neurons are intercon-

nected so that accidental synchronizations are suppressed. However, when

flower is synchronized to many other attributes, the suppression becomes

stronger as the number of synchronizing activity increases, causing binding

failure for an attribute pretty.
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since the raising speed of the potential is deeply related to the strength of inhi-

bition/excitation, such an accumulation effect makes it more difficult to decide

the raising speed. Since a preconfigured network suffers from the difficulty, it

is much more difficult to acquire such a configuration by learning4.

We claim that any local mechanism of phase arbitration suffers from similar

problems. Since the oscillation phases can represent bindings between any rep-

resentation of attributes and entities, the oscillation phases have to be global.

It is difficult to avoid the global phenomenon, an accidental binding by a phase

collision, using local mechanisms; if the phase collision is solved by a local

mechanism, it will fall into a reproduction of global information at each local

position, which is equivalent to the sharing of the global information.

Note that the globalism of the mechanism is not limited to the phase coding.

Since generalizability of binding representation requires the coding should be

able to represent any binding of an attribute and an entity, a coding of bindings

should have a global property to represent any binding, including spatial and

intensive complexity. Thus, accidental bindings of unrelated entities are also

common to any coding, which is solved by a global mechanism, specific to the

coding. In the case of the temporal coding, the global mechanism turns out to

be a shared signal of a global phase.

4We should also consider additiveness for the learning of phase arbitration. If the learning

is multiplicative (specific to each binding), the brain cannot keep a phase coding for unen-

countered bindings.
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3.5 Discussion

The theory of phase arbitration is only a part of the language understanding

process; it is still far from a complete model of language understanding in the

brain. In addition, the detail of the phase arbitration mechanism is unknown.

We cannot conclude which mechanism is actually used in the brain and which

mechanism should be implemented in the language-understanding simulation.

However, we are now able to look into the brain physiology to find a similar

mechanism in the brain, because we succeeded to suggest the appearance of

the global phase arbitration mechanism. It is expected that the features in the

suggestion, such as utilization of a global signal and phase shifting, helps us to

find a mechanism, which performs phase arbitration.

Actually, some mechanisms studied in the brain science are similar to global

phase arbitration. O’Keefe and Recce [39] report that phase precession occurs

in a rat hippocampus. Place-coding cells, which correspond to the current po-

sition of the rat, first become active in a specific phase to the Theta oscillation,

and then shift their phase gradually to make phase difference to the next activa-

tion of other place-coding cells. This mechanism, which is supposed to provide

short-term episodic memory, can also be regarded as a global phase arbitration

mechanism using Theta oscillation as a global signal. It is possible that the

phase arbitration for language is provided in such an episodic memory mech-

anism, as some research on neurolinguistics [22] suggests the relation between

sentence understanding and short-term memory capacity.

However, the mechanism that causes phase precession is not known. Lis-

man’s mathematical model of oscillation subcycles [29] is simple and useful,
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except the conflict of the direction of phase precession against the recent phys-

iology (Lisman’s model goes delaying, while recent studies point to advancing).

No study is known about the memory deactivation mechanism in the brain,

except old memories spilling out from the width of Theta oscillation. However,

Ono [40] reports that, in a mathematical model of phase precession [29], stor-

age of multiple patterns sharing neurons to be active may cause interference

between patterns to deactivate one of the patterns. In a sentence parsing and

understanding task, it is likely that a pattern of partial parsing results shares

neurons with another partial result that covers the former result, thus this type

of interference may occur on human memory. Since deactivation by interfer-

ence suggests another memory structure different from stack, sentence parsing

and understanding based on such a memory structure is worth to be studied in

future.

3.6 Summary

We explored a model of human working memory mechanism from a viewpoint

of sentence understanding. We found that the temporal complexity is likely to

be used in solving the feature binding problem than the spatial and intensive

complexity. We also pointed out that the oscillation phase coding based on

the temporal complexity poses a new problem to the memory model, i.e. phase

arbitration. We discussed the mechanism of phase arbitration and suggested an

existence of a global phase arbitration mechanism in the language understanding

mechanism in the brain.
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Chapter 4

A Discrete-Event Simulator

for General Neuron Model

A high-precision and efficient simulator for pulsed neural networks is demanded

to verify the model of human language understanding pursued in the previous

chapter, in which the importance of the temporal complexity of neuronal ac-

tivity is revealed. However, existing simulators cannot provide both precision

and efficiency, because of the lack of appropriate simulation techniques. In this

chapter, we describe techniques for discrete-event simulation of pulsed neural

networks, applicable to arbitrary spike-response model neurons with finite dis-

continuities.
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4.1 Introduction

The importance of time in a neural network simulation is increasing. Emerging

research areas, such as simulation of memory and context handling in a neural

network, are requiring simulation of temporal transitions of the network. Recent

studies pointed out that temporal coincidence of pulses has various roles in the

brain, including binding encoding [33] and functional connectivity [12]. A high-

precision and efficient simulator for pulsed neural networks is demanded for

studying temporal behavior of the brain.

Most existing simulators are based on a discrete-time simulation framework

(also known as synchronous simulation) [5, 41]. Although this framework is easy

to develop, it inevitably requires a large amount of computation to increase tem-

poral precision. If the temporal precision is reduced to achieve efficiency, pulse

timings are restricted and the expressive power of temporal coding decreases.

It is widely known that a discrete-event simulation framework, also called

event-driven simulation, can simulate a neural network with high temporal pre-

cision. Studies on discrete-event neural network simulation were pioneered by

Watts [53], and application to a larger network has been investigated by various

researchers [16, 37]. However, the neuron model in the existing simulators is

restricted to a rather simple class, in which the future transition of the neuron

is easily predictable. Techniques to simulate a more complex class of neuron

models are thus being demanded by advanced simulation tasks, such as the

simulation of the short-term memory model of hippocampus, .

It is known that most of the demanded neuron models can be described by

the Spike-Response model (in Section 2.2), whose state is described as a sum-
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mation of presynaptic pulse-response functions, a self-spike response function

and an external input function. This model includes a large class of neurons,

such as leaky integrate-and-fire neurons [14]. However, its high expressive power

makes it difficult to predict the future behavior of a neuron, especially to detect

the nearest threshold-crossing point that corresponds to the next firing time.

In response to the above-described situation, we developed a second-order

incremental partitioning method, which is a general solver to detect the nearest

threshold-crossing point by using linear envelopes of a function and its deriva-

tives. The linear envelopes can be defined for any C1-class continuous function;

even when the function has incontinuities, we can partition the function into

continuous parts. Moreover, since linear envelopes of various functions can be

summed, this method is easily applicable to a neuron model with any functions

splittable into finite ranges of second-order differentiable functions, including

the Spike-Response model of a neuron.

We also devised a filtering technique for reducing the cost of the partitioning

method. Since the partitioning method is based on prediction of the future,

every arrival of a pulse causes recalculation of the prediction, which degrades the

efficiency. Our technique, maximum gradient checking, effectively reduces the

number of predictions by filtering out unnecessary ones prediction by concerning

the next known pulse arrival at a neuron, i.e., arrival time.

4.2 Discrete-event Neural Network Simulation

Numerical simulation of neural networks is commonly based on a discrete-time

simulation framework. In discrete-time simulation, the temporal transition of
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neural states are represented in a form of associated differential equations. The

values of state variables are then updated synchronously for each time step ∆t,

using a finite integration method such as Euler or Runge-Kutta. ∆t gives tem-

poral resolution of the simulation in a sense that the simulator cannot reproduce

dynamics in a time span less than ∆t. Since the simulation cost is inversely

proportional to ∆t, a coarse temporal resolution must be used for large-scale

network simulations.

For the simulation of pulsed neural networks, the discrete-time simulation

framework is not suitable. To simulate the temporal correlation of pulses, ∆t

must be significantly less than the correlating pulses, so the performance of the

simulation degrades drastically. In addition, when the framework is applied

to pulsed neural networks, most of the calculation is a deterministic update

of neuron states. In a pulsed neural network, neurons intercommunicate with

pulses. The transition of a neuron state between receiving pulses is determin-

istic. In the case of a fine-grained time step, most of the synchronous updates

in discrete-time simulation concern deterministic evolution of neuron states.

If this evolution were properly calculated, such synchronous updates could be

reduced.

Elaborating this idea, we obtain a different framework of simulation, which

is called a discrete-event simulation framework. An arrival of a pulse to a

neuron is regarded as an event; the state of the neuron is calculated only at the

time an event occurs. This process may cause the neuron to fire, which causes

new pulses to be sent, each of which turns into another event. This framework

is called discrete-event because it cannot simulate continuous interaction of

neurons; that is, it can only simulate a discrete sequence of events. However, it
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is a suitable framework for pulsed neural networks, in which every interaction

of neurons is a discrete pulse.

4.2.1 Discrete-Event Simulation of a Neural Network

Figure 4.1 sketches a discrete-event simulation process with a simple integrate-

and-fire neuron model. The simulator keeps information of each neuron as a

pair consisting of the last simulation time and the value of the state variable at

that time, which are denoted in the figure as ‘Last’ and ‘Sig’, respectively. A

scheduling queue keeps pending events in the order of arrival time.

The simulation process consists of the repeated deliveries of the earliest

pending event in the scheduling queue to the neuron. In the figure, the event

arriving at neuron A at time 5.0 is the earliest pending event; thus it is delivered

to neuron A. Then the state of the neuron is updated to the time of the event.

In this case, the last simulation of neuron A was at time 4.0, and the state

variable at that time was 0.7. As the event arrived at time t = 5.0, the state

of neuron A is updated to time 5.0: Last becomes 5.0, and Sig is updated to

0.4, i.e., the decayed value at t = 5.0. Note that, in this update process, other

neurons such as neuron B are kept unchanged. The calculation of the state of

A presumes no other pulse arrives at A before that time, although the state

of neuron B, which may send pulses to A, is left uncalculated from t = 3.3.

This is because we know that neuron B never fires unless it receives an external

pulse, and pulses for B are absent between the last calculation of the state of

B (t = 3.3) and the calculation of the state of A (t = 5.0). The absence of the

pulses is ensured by the scheduling queue, which stores events and serves them
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Figure 4.1: Discrete-event simulation model
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in order of arrival time. In this way, discrete-event simulation keeps the whole

network consistent while minimizing the neuron states to be updated.

Thereafter, the effect of the pulse is added to neuron A, which causes A to

fire at time 5.0. As a result, A sends a pulse to neuron B, with a delay of time

1.0. Thus, an event of pulse arrival at B is scheduled at time 6.0. When the

event comes to the top of the queue, it is delivered to neuron B, and at that

time the state of B is updated. If the event caused firing, then another set of

new events is scheduled. In this way, the repeated deliveries constitutes the

simulation.

As described above, in a discrete-event simulation framework, the update

process of states no longer relies on synchronous processing of neurons in ∆t

steps, but on calculation based on event arrivals. This advantage makes it easy

to achieve high temporal precision efficiently with pulsed neural networks.

4.2.2 Delayed Firing

One remaining problem is the handling of delayed firings. In some cases, the

effect of an event on a neuron is not instant. In the upper part of Figure 4.2,

the pulse itself does not cause immediate firing, but causes the neuron to fire at

a later time. The handling of such a firing, which we call delayed firing, poses

a problem for discrete-event simulation. Namely, since the neuron state is not

calculated until the arrival of the next event, the delayed firing is ‘ignored’ until

the arrival of the next event. If the pulses produced by the delayed firing are

not simulated in order of arrival time, the causality of the simulation system is

violated.
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Figure 4.2: Delayed firing of a neuron. The upper part shows a simple sine

function with an immediate response for the pulse at time t1. The lower part

shows spike-response functions for the pulses at t1 and t2. In the latter case,

the first prediction of the firing time at t1 is changed by another pulse arrival

at t2.
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In a general neuron model such as the Spike-Response model, delayed firing

is not a special case. If a response function such as the one in the lower part

of Figure 4.2 is used, a firing is always delayed from the last pulse arrival.

Moreover, a superposed response function from a later arrival of another pulse

causes the change in the delayed firing time. Such a change poses more difficulty

for the simulation.

To avoid this problem, delayed firing has to be scheduled in the pending

event queue, which requires prediction of the precise timing of the delayed firing

when the previous event is processed. This firing prediction is undoubtedly the

key to precise simulation of pulsed neural networks. However, it is difficult to

predict firing for a complex neuron model such as the Spike-Response model,

as described in the next section.

4.2.3 Difficulty of Delayed Firing Prediction

Simulating complex neuron models, including the Spike-Response model of

pulsed neural networks, are demanded in neural modeling of human memory

and high-level information tasks using human memory[33]. Such a neuron model

is described by a summation of a number of functions of time t, including expo-

nential and trigonometric functions. However, it is difficult to predict the time

of delayed firing for such a neuron.

The difficulty is caused by the mathematical complexity involved in finding

the time of delayed firing. Even if we can give a functional expression to the

state variable ui(t), it is different from finding roots of the equation ui(t) = θ,

which gives the firing time. Analytical methods for finding a root are restricted
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Figure 4.3: Newton-Raphson method finding a root. Starting at the point x0,

the method calculates a tangent line of the function at x0 and moves to the

intersection of the line and the x-axis, which is x1. One more application gives

another point x2, and repeating this process numerically gives the crossing point

of the function and the x-axis.

to simple functions, such as a linear function and a simple exponential function.

In general, we cannot analytically find the roots for an equation that is a sum-

mation of several exponential and trigonometric functions; it is more difficult

than finding roots of higher-order polynomial equations.

However, we can solve such an equation numerically. The Newton-Raphson

method is one of the best-known and most powerful methods to give a numerical

solution to an equation. Figure 4.3 illustrates the process. Basically, in solving

an equation f(x) = 0, the method repeatedly moves variable x to a crossing
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point of the x-axis and the tangent line of f(x) at point x until x converges on

a root.

Although the simple application of the Newton-Raphson method sometimes

fails to find a root, it is known that the Newton-Raphson method combined with

the bisection method can safely find a root if we enclose the root in a range [43].

Here, enclosing means finding a range (x1, x2) for a function f(x) in which the

values f(x1) and f(x2) have the opposite signs; at least one root exists in the

range because the function is continuous. Since the bisection-combined Newton-

Raphson method is applicable to any differentiable function, it is suitable to

find a root of ui(t) = θ, where ui is a sum of differentiable functions.

Nevertheless, the method is still incomplete; i.e., it cannot predict the de-

layed firing time. Figure 4.4 illustrates a situation comprising a sum of a linear

function and a sine function. A prediction algorithm of the delayed firing time

should correctly find the first point beyond the threshold, which is time t0 in

the figure. However, we cannot control which root is calculated by the Newton-

Raphson method; namely, the method may converge to any root, such as tS,

the second crossing of the threshold.

For accurate simulation we have to guarantee that the solver finds the first

threshold-crossing point. However, it is difficult to distinguish it from false

crossing, such as tF, where the state variable approaches but does not go beyond

the threshold. When the solver finds t0 as a root, how can we guarantee that all

previous approaches to the threshold are all false crossings? This is a difficult

question for a Spike-Response-model neuron, because many exponential and

trigonometric functions are superimposed to form its state function. The next

67



θ

t0 tStF
Time

Figure 4.4: Difficulty in finding the firing. We want to find t0, the first threshold-

crossing time. However, it is difficult for a solver to distinguish it from tF, where

the state variable approaches but does not go beyond the threshold, and from

tS, the second threshold-crossing time.
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Figure 4.5: Incremental partitioning method. Blue denotes the current simula-

tion time, red denotes the end of the partition, and green denotes the time of

delayed firing.

section describes our method to solve this problem.

4.3 Incremental Partitioning Method

4.3.1 Overview of the Incremental Partitioning Method

Partitioning is a simple idea to solve the difficulty concerning the Newton-

Raphson method. We divide the function into partitions, each of which has at

most one threshold-crossing point. After that, we check each partition to see
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whether it has a crossing point, and apply the Newton-Raphson method for

the first partition containing the crossing point. This method can find the first

crossing point, i.e., the time of the delayed firing, without mistakenly finding

the second and later crossing points.

In the simulation, all partitions do not need to be solved at once; they

can be calculated and solved one partition at a time. Figure 4.5 illustrates this

process. When a partition containing the current simulation time t is solved but

no crossing in the partition is found, calculating and solving the next partition

can be postponed until the simulation time reaches the end of the partition.

The postponement is done by scheduling the solution of the next partition as

an event. We call this method incremental partitioning.

This method is suitable for discrete-event neural network simulation for the

following reasons. First, scheduling of the next partitioning can be implemented

in a consistent way with scheduling of other events, such as firing and pulse

arrival. Second, it uses more computing power for the near future; since a new

arrival of pulses easily changes the state of the neuron, it is often redundant to

predict firings in the distant future.

The remaining problem is providing an algorithm for partitioning. If this

method requires too fine-grained partitioning, the discrete-event simulation will

lose its advantage over discrete-time simulation. The rest of this section de-

scribes the partitioning algorithm, which uses linear envelopes of the function.
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(a) A linear envelope for an exponential-decay function

(b) A linear envelope for a sine-wave function

(c) A linear envelope for the summed function of the above two,

composed of the linear envelopes shown in (a) and (b)

Figure 4.6: Linear envelopes for non-linear functions. Although the composed

envelope shown in (c) is looser than the envelopes shown in (a) and (b), it

correctly encloses the function.
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4.3.2 Linear Envelopes

To perform partitioning efficiently, we calculate linear envelopes of functions to

estimate the range of function values. In short, a linear envelope provides a

convenient way to cover possible values of a function with a linear region. Since

a linear envelope of a sum of functions can be easily composed from linear

envelopes of addend functions, we can cover a complex summed function with

a linear envelope.

Linear envelope L(f, t0) of function f(t) is a region, whose edge is a set

of linear equations and contains any point (t, f(t)) such that t is greater than

a given starting point t0. Figure 4.6 shows examples of linear envelopes. In

Figure 4.6(a), an exponential decay function is enclosed by a linear envelope

consisting of three linear inequality expressions (shown as dotted lines). In

Figure 4.6(b), a sine wave function is enclosed by a linear envelope consisting

of four inequality expressions. Note that a linear envelope is not unique, even

if f(t) and t0 are given.

It is notable that we can easily compose a linear envelope for a summed

function of several nonlinear functions from the linear envelopes of the addend

functions. Figure 4.6(c) shows a composed linear envelope of a function, which

is a summation of the above two functions. This property enables us to calculate

linear envelopes for many complex functions.

In the simulator Punnets, the linear envelopes are calculated using tangent

gradients and their approximations. See Section 4.9for the actual formulas used

in the Punnets system.

In the following, we also use linear envelopes of the derivatives of a function.
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We call a linear envelope of a first-order derivative a first-order linear envelope,

and that of a second-order derivative a second-order linear envelope. In need

of distinction, we call a linear envelope of a non-derived function a zeroth-order

linear envelope.

4.3.3 Incremental Partitioning with Linear Envelopes

It is certain that a function never crosses a threshold when the threshold is out

of a linear envelope of the function. We can thus partition the function at the

first point where the linear envelope touches the threshold. As illustrated in

Figure 4.7, repeated application of this process constitutes incremental parti-

tioning, which we call zeroth-order incremental partitioning.

Note that this partitioning never produces a partition that contains threshold-

crossing. The closer the threshold-crossing is, the smaller the partition becomes;

we never reach the threshold-crossing, as when Achilles could not catch up the

turtle. One solution to escape from this paradox is to introduce a minimum

partition size ∆t; in other words, fallback to discrete-time simulation. Such

fallback often degrades the simulation efficiency.

A more sophisticated partitioning method uses linear envelopes of the de-

rived function. The derived function never reaches zero in a range that the linear

envelope of the derivative never touches zero; in other words, the function ei-

ther monotonously increases or monotonously decreases in the range. Thus, if

we partition the function in the range, the partition will have, at most, one

threshold-crossing point. Moreover, we can see the existence of the threshold-

crossing by checking the signs of function values at both ends of the partition; if
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Figure 4.7: Zeroth-order incremental partitioning. The arrows denote ranges

of the partitions. The end of a partition is given by an intersection point of the

envelope edge and the threshold (indicated by a small circle), which is in turn

the start of the next partition.
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Figure 4.8: First-order and second-order incremental partitioning methods.

First-order partitioning uses larger one of the above two partitions, while

second-order partitioning uses the largest of the three partitions.
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the signs are opposite, a threshold-crossing is in the partition, and at the same

time, the crossing is enclosed in the partition so that the bisection-combined

Newton-Raphson method is applicable. As shown in Figure 4.8, the first-order

incremental partitioning uses two linear envelopes, a linear envelope of the state

function and a linear envelope of the derivative, and uses a larger partition from

two envelopes; the method reverts to the minimum partition size ∆t as before,

but it relies less on the ∆t fallback.

We can enlarge this approach to second-order linear envelopes as second-

order incremental partitioning, which uses the largest partition obtained from

the three linear envelopes. In a partition where the second-order derivative

never touches zero, the function is either upward convex or downward con-

vex, as shown in Figure 4.8. If the function values of the both partition ends

have opposite signs, we can apply the enclosed Newton-Raphson method safely.

However, the problem occurs in the case with the same signs, as shown in Fig-

ure 4.9(a), since the partition may have either zero or two threshold-crossings.

In this case, we first discriminate the existence of the threshold-crossings by

enclosed peak searching with parabola approximation [43] (see Figure 4.9(b)).

If the peak is beyond the threshold, we can enclose the crossing between an end

of the partition and the peak; otherwise, it is analytically discriminated that

the partition has no crossings. Because of the convexness of the function, the

discrimination can be finished before the real peak is found (see Figure 4.9(c)).

It is noteworthy that the effects of the three envelopes are complementary.

When the function value is far from the threshold, the zeroth-order linear en-

velope usually makes the best and the largest partitioning. In the case that the
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Figure 4.9: Discrimination of threshold crossing. (a) Existence of threshold-

crossing. Signs of the function at both ends of the partition show the left case

has crossing, but cannot discriminate the middle and the right cases. (b) En-

closed peak searching. The triplet of points 1, 2, and 3 are said to be enclosing

the peak (f(x1) < f(x3), f(x3) > f(x2), x1 < x3 < x2). Parabola approxima-

tion (dotted line) suggests the peak point as 4, so we can narrow the enclosing

to points 3, 2, and 4. The peak can be found by repeating this process. Actually

point 4 is above the threshold, thus no more peak searching is required (crossing

is enclosed between 3 and 4). (c) Discrimination of threshold-crossing using

convexness. Since both points P and Q are below the threshold, this function

has no threshold-crossing in the enclosed region. In this case, we can safely

abort the enclosed peak searching.
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function value is close to the threshold and the gradient is large, a first-order lin-

ear envelope gives the large partition that encloses the crossing. If the function

value is close to the threshold and the gradient is also small, the second-order

linear envelope will make a partition that contains the convex curve to be solved

by peak search. Since it is theoretically possible that all three approaches may

fail to produce a good partition, it is still necessary to revert to the minimum

partition size ∆t; however, this rarely happens in actual simulation.

4.3.4 Applicability of the Incremental Partitioning Method

The incremental partitioning method uses linear envelopes. For calculation of a

second-order linear envelope, the function must be second-order differentiable.

Note that any second-order differentiable function satisfies C1-class continuity,

that is, the requirement of the Newton-Raphson method.

Moreover, to perform partitioning effectively, the vertical range of linear

envelopes at a given starting point t is expected to converge to point (t, f(t)).

This ensures that the linear envelopes give better prediction for the nearer

future.

These requirements can be relaxed by introducing additional partitions.

For example, if a function with incontinuities can be split into finite ranges of

continuous functions by additional partitions, the function can be handled by

the incremental partitioning method. Some functions such as f(t) = t2, which

is unable to maintain convergence of the linear envelopes to the starting point,

can be split by additional partitions to satisfy the convergence expectation.

As a result, the incremental partitioning method can be applied to any
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function splittable into finite ranges of second-order differentiable functions.

Although the method is unapplicable to some ill-natured functions (such as a

function with an infinite number of incontinuities in a finite range), we can say

the method covers any arbitrary function for the purpose of neural network

simulation.

4.4 Efficient Simulation Techniques

The previous section introduced the incremental partitioning method, which

predicts the delayed firing for a neuron model with practically any arbitrary

function. However, naive application of the method causes inefficient simula-

tion. Since the prediction is based on an assumption that no further pulses

arrive, it has to be updated each time a new pulse arrives at the neuron. This

degrades the performance of the simulation. Moreover, the update of the pre-

diction changes the time of the scheduled events, which stresses the scheduling

mechanism.

We have developed an efficient technique that solves these problems: max-

imum gradient checking. It utilizes the next known pulse arrival to suppress

redundant predictions. It also suppresses the changes to scheduled events, so it

reduces the simulation cost.

4.4.1 Quick Filtering

The incremental partitioning algorithm predicts the delayed firing time of a

neuron in the case that the neuron receives no more pulses after the last deliv-
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Figure 4.10: Filtering a redundant prediction by gradient-limit checking

ered event. However, it is often the case that the next pulse arrival is already

scheduled but not delivered yet. Utilizing this information, we can decrease the

cost of the prediction.

Quick filtering is a technique that uses the time of the next-known-pulse

arrival to filter out unnecessary predictions. The prediction based on linear en-

velopes can be suppressed if we can confirm that no threshold-crossing occurs

till the arrival of the next known pulse. In such a case, it is not necessary to

schedule the end of the partition as an event, since the state of the neuron is

anyway recalculated at the time of the next-known-pulse arrival. If the confir-

mation is efficient enough, the decrease of the cost of prediction and scheduling

exceeds the additional cost of confirmation.

For this purpose, we introduce zeroth-order linear envelope checking and
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gradient limit checking. The work of zeroth-order linear envelope checking is to

check the precedence of the next-known-pulse arrival by using a zeroth-order

linear envelope; in this case, the calculation cost of first- and second-order linear

envelopes can be suppressed. However, to reduce the cost of calculating zeroth-

order linear envelopes, we introduce a quicker checking method that uses the

upper limit of the gradient of the function for quick checking. Since the upper

limit of the gradient is a constant for each function, it can be calculated before

starting simulation. Moreover, the upper limit of the summed function can be

easily calculated by summing up the upper limits of the gradients of component

functions.

Figure 4.10 shows an example of our quick checking method. When the

next known pulse arrival is close to the current time (which is often the case

in handling pulse bursts), the pulse arrives before the gradient upper limit

line reaches the threshold. The filtering technique thus reduces the cost of

re-scheduling as well as the cost of calculating linear envelopes.

4.4.2 Queuing Model for Quick Filtering

Many discrete-event simulators have a single queue to schedule all events, e.g.,

pulse arrivals. However, in a single-queue model, it is difficult to find the next

pulse arrival for a specified neuron. To apply the quick-filtering technique,

another queuing model should be used in order to allow a quick retrieval of the

information of the next known pulse arrival.

To meet this requirement, we introduce another queuing model, in which

each neuron has a local event queue. The local queue of a neuron holds all
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pending events that affect the neuron. A main schedule queue keeps neurons

sorted according to the first event time of their event queues. In this model,

the next event of a neuron can be easily found at the top of the neuron’s local

event queue.

Note that this change of queuing model does not increase the order of

scheduling cost. The complete binary tree (heap tree) algorithm, which is a

most popular and empirically efficient algorithm for a priority queue [21], needs

a cost of O( log n) for insertion and retrieval of an entry, where n is the en-

tries in the queue. Suppose a neural network has N neurons and each neuron

has ν pending events. In the single-queue model, the insertion/retrieval cost is

O( log νN). On the other hand, in the object-queue model, we generally need

to insert both the neuron’s queue and the main queue, which keep ν and N en-

tries, respectively. The total insertion/retrieval cost is O( log ν + log N), whose

order is equivalent to O( log νN), the cost of the single-queue model.

4.5 Implementation

We implemented Punnets[32], the pulsed neural network simulator, using the

techniques described in this chapter. The simulator is a 3000-step C++ pro-

gram library, which is highly object-oriented and easily used by C++ programs.

Punnets has a class that simulates any neuron based on Spike-Response model,

as well as an optimized version of classes simulating an integrate-and-fire neu-

ron with a dynamic threshold. Since neurons and synapses are designed as an

object, a user can use various styles of neurons and synapses, including stochas-

tic neurons and dynamically learning synapses. The library also has a logging
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ability to record the behavior of neurons as either event reports or state graphs.

4.6 Experiments

We performed a series of experiments to prove the efficiency of the incremental

partitioning method and the quick filtering technique. In the experiments, we

used 10−8 as the value of ε (the minimum movement of x for one iteration of

Newton-Raphson method).

Figure 4.11(a) shows the zeroth-order incremental partitioning on a summed

function consisting of a sine function and an exponential function. In this fig-

ure, the simulator makes 19 partitions, although the later partitions are too

narrow to see. The last eight partitions are enlarged in Figure 4.11(b). Be-

fore the ∆t-cutoff is used, the distance between the function and the threshold

reaches less than the epsilon value and causes firing. If we use first- or second-

order incremental partitioning, the area shown in Figure 4.11(b) is partitioned

into only one partition. In this case, nine iterations of the Newton-Raphson

method correctly find the firing time. The gaps between firing times of zeroth-,

first-, and second-order partitioning are less than 10−8. It is clear that the

precision achieved by discrete-event simulation outperforms discrete-time sim-

ulation, which requires 1011 synchronous updates to achieve 10−8 precision in

a 103 temporal range.

Note that the number of iterations in the Newton-Raphson method (nine

times) was almost the same as the number of partitions in zeroth-order par-

titioning (eight times). This is because, in this local range, the gradient of

the edge of the linear envelopes is near to the tangent of the function, so that
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Figure 4.11: Application of zeroth-order incremental partitioning
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Figure 4.12: Order difference of incremental partitionings
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the zeroth-order partitioning makes the same movement step as the Newton-

Raphson method does. However, higher-order partitioning has the advantages

that, first, zeroth-order partitioning lacks the general solving power of an equa-

tion; second, the cost of an iteration of Newton-Raphson method is lower than

the cost of a partitioning.

Figure 4.12 shows the simulation result from a neuron model, that is, an

addition of two sine waves with slightly different wavelength. This condition

corresponds to one of the worst cases, since the composed linear envelope of the

function becomes much broader than the actual range of the function.

Figure 4.12(a) shows the result from zeroth-order incremental partitioning.

Despite the broad linear envelope, the simulator reaches the firing time after

152 partitions. Higher-order partitioning achieves better results: first-order

partitioning shown in Figure 4.12(b) requires 97 partitions, and second-order

partitioning shown in Figure 4.12(c) requires only 76 partitions to reach the

firing time. These experiments show that the works of higher-order partitioning

are complementary to the works of the zeroth-order partitioning.

We tested the performance of our method by simulating a large-scale net-

work. The network consists of 100 neurons in the Spike-Response model. Every

neuron has a response function η(t) = exp(−θ1t) and sine-wave external input

H(t) = wsin(ωt), and 10 connections from other neurons, each of which has

the activation function εij(t) = wij(exp(−θ1t)− exp(−θijt)), where wij and θij

are randomly determined for each connection. We also introduced 200 random

pulses to the network, so 6,276 fires were observed in the range of simulation.

Table 4.1 lists the performance results carried out on a Pentium 4 Xeon
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Partitioning 2nd 1st 0th

Quick filtering Yes No Yes No Yes No

Time (sec) 5.09 6.02 5.21 6.00 10.88 11.21

# of Partitions 53,790 90,348 55,326 91,995 142,057 179,624

0th partitions 41,222 75,904 42,292 77,051 133,811 171,448

1st partitions 11,699 13,484 13,034 14,944 0 0

2nd partitions 869 960 0 0 0 0

∆t partitions 0 0 0 0 8176 8176

# of Re-scheduled events 23,545 56,350 23,424 56,350 22,527 56,350

# of events filtered by GLCa 26,720 0 26,752 0 27,218 0

# of events filtered by 0th-LEb 9,838 0 9,917 0 10,349 0

aGradient-limit checking
bZeroth-order linear envelope checking

Table 4.1: Performance experiments

2-GHz processor. The second-order partitioning method with quick filtering is

the fastest of all the tested configurations. The table shows that the reduction

of the number of partitions by higher-order partitioning algorithms exceeds the

additional cost of the complex partitioning algorithm. In addition, the quick-

filtering techniques — gradient-limit checking and zeroth-order linear checking

— are effective to filter out calculation of partition ends to be re-scheduled.

Note that in all tests, memory consumption was kept under 1.6 megabytes.
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4.7 Related Work

Only a few studies pursue discrete-event simulation of pulsed neural networks.

The first simulator by Watts, SPIKE [53] targeted a simple neuron model and

a small network. He showed the advantage of the discrete-event simulation

framework by simulating complex behavior on a hand-made neural network.

Mattia and Giudice [37] developed techniques for large-scale discrete-event

simulation of pulsed neural networks. They achieve efficiency by grouping si-

multaneous pulse arrivals into one event, using a layered queue structure. Their

simulator efficiently handles synaptic plasticity and Poisson-distributed random

inputs. They also discuss the handling of delayed firing in the case of a neuron

model with a simple differential equation, but it is not applicable to a general

neuron model.

Graßmann proposed a distributed simulation of pulsed neural networks on

a discrete-event simulation framework [15, 16]. He reported speedup by a factor

of 2.4 on three CPUs. He also mentioned that delayed firing can be predicted

by using table lookup, but details are not given1.

1Although a table-lookup method can accelerate calculation of delayed firing if the pulses

are represented by a simple formula, it seems inapplicable to a neuron with input of various

pulse models and to a neuron with external inputs. Moreover, to achieve high precision for the

calculation of time and threshold, our techniques will be also required, such as firing possibility

check by peak search and refinement of the calculation by the Newton-Raphson method.
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4.8 Summary and Future Work

We developed the second-order incremental partitioning method, an efficient

method for predicting the delayed firing time from the function of the neuron

state variable. We also devised the quick-checking technique, which uses the

time of a future pulse arrival to reduce the cost of future prediction. Using

these techniques, we implemented a neural network simulator that is based on a

discrete-event simulation framework but is still capable of simulating practically

any Spike-Response neuron model.

One of our future works is the parallelization of the simulator. Many large-

scale discrete-event simulations are now performed in a parallel computing en-

vironment [13, 27]. The discrete-event simulation of a pulsed neural network

seems a suitable application for parallelization, since every pulse transmission

can be treated as an event, and delays between neurons enable us to use a

simpler synchronization mechanism. Moreover, the queuing model used in our

simulation localizes the scheduling information, so it is expected that the sim-

ulation can be speeded up more by parallelization of our queuing model than

by that of a single-queue model.

4.9 Appendix: Linear Envelope Calculation in Pun-

nets

This section illustrates calculations of linear envelopes in the Punnets system.
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Figure 4.13: Linear envelopes of f(x) = exp(−x)

4.9.1 Monotonic Convex Function

It is simple to calculate linear envelopes for monotonically increasing or mono-

tonically decreasing and converging convex functions, such as f(x) = exp(−x).

For a monotonically decreasing function, the following definition of linear

envelope for the point x0 is used.

L(f, x0) =





y ≤ f(x0)

y ≥ f(x0) + df
dx

∣∣∣
x=x0

(x− x0)

y ≥ f(∞)

(4.1)

A monotonically increasing function can be transformed into a monotoni-

cally decreasing function, such as g(x) = −f(x). Figure 4.13 illustrates linear

envelopes for various points of f(x) = exp(−x).
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Figure 4.14: Linear Envelopes of f(x) = sin(x)

4.9.2 Sine Function

In calculation of the linear envelopes of a sine function, it is useful to use infor-

mation of tangent lines from the start point of the linear envelope. However,

there is no easy formula for calculating the tangent lines. We used the following

approximation for the gradient of one of the tangent lines:

γ(x0) =





cos(θ) (θ < −π
2 )

sin(α(cos(β(θ + π
2 ))− 1)) (θ ≥ −π

2 )
(θ = x0+2nπ, −π ≤ θ ≤ π),

(4.2)

where α = 1.311 and β = 0.375867. The gradient of the other tangent line can

be calculated from −γ(t0 + π).

As shown in Figure 4.15, the approximation always gives a greater gradient

than the actual gradient of a tangent line. A linear envelope calculated from the

approximation therefore always contains a linear envelope calculated from the
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Figure 4.15: Comparison of actual gradient and approximated gradients γ(x0)

actual tangent lines. Figure 4.14 illustrates linear envelopes for f(x) = sin(x).

In a formula, the linear envelope is given below.

L(sin, x0) =





y ≤ 1

y ≤ −γ(x0 + π)(x− x0) + x0

y ≥ γ(x0)(x− x0) + x0

y ≥ −1

(4.3)

4.9.3 Pulse Response Function

In the Spike-Response model, the following function is often used as a response

to a pulse.

s(x) = w · (exp(−ax)− exp(−bx)) (0 < a < b) (4.4)

We can apply linear transformation for the function in the following canon-
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ical form.

S(x) = (exp(−zx)− exp(−zφx)) (φ =
b

a
> 1, z =

2 log φ

φ− 1
) (4.5)

Here, z is a normalization factor that fixes the inflection point of the function

to x = 1. Beyond the point (x > 1), the function is monotonically decreasing,

so the linear envelope described in Section 4.9.1is applicable. This function

reaches the peak at x = 1
2 , and the value at the peak is S( 1

2 ) = exp(− 1
2 zx)−

exp(− 1
2 zφx).

We also use the approximation to estimate the gradient of the tangent line:

ξ(x0) = (−z exp(−z) + zφ exp(−zφ))(1− (1− x0)ψ), (4.6)

where ψ = 0.3(log10 φ)2 + 2.45. Although this approximation is not as good as

the approximation of sine function, the function always gives a larger gradient

than that of the actual tangent.

This approximation gives the linear envelope as in follows:

L(S, x0) =





y ≤ S( 1
2 )

y ≤ S(x0) +





dS
dx

∣∣∣
x=x0

(x− x0) (x0 < 1
2 )

0 (x0 ≥ 1
2 )

y ≥ S(x0) +





ξ(x0)(x− x0) (x0 < 1)

dS
dx

∣∣∣
x=x0

(x− x0) (x0 ≥ 1)

y ≥ 0

(4.7)

Figures 4.16 and 4.17 illustrate linear envelopes of Equation (4.7) for φ = 10

and φ = 2. Figures 4.18, 4.19, 4.20, and 4.21 show the actual tangent, estimated

tangent, estimation error, and actual and estimated tangents at φ = 10.
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Figure 4.16: Linear envelopes of S(x) at φ = 10
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Chapter 5

Neural Network Model

Towards Language

Understanding

We propose a design of a dynamical neural network model that converts a sim-

ple input sentence into a set of binding representations in the temporal coding.

This network model can be an important step towards a language-understanding

neural network model, because binding representations are considered as a criti-

cal portion of semantic representations. The experiments on the network model

show that a neural network model can be constructed within the requirements

and preferences we explored in Chapter 3. Although the model is too small to

discuss the linguistic problems, the following discussion reveals some important

differences of the model from human language understanding, and points to

further directions of research.
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In Section 5.1 we describe the design of neural network model. After that,

the result of experiments on the network is shown in Section 5.2, which shows

the construction of binding representations from a sentence. Finally we discuss

the design and future directions of this research in Section 5.3.

5.1 Design of the Network Model

In this section we describe the overall architecture of our neural network model

for sentence-understanding.

Our goal is a continuous-time model of a neural network that produces

binding representations of an input sentence, as described in Section 3.2. A

sentence is given to the network as a sequence of words. The network changes

its state as it receives each word. After the network receives the last word of a

sentence, the result state is expected to keep the meaning of the sentence. Here,

a meaning includes bindings in the sentence, e.g., a sentence ‘John loves Mary’

contains ‘John=lover’ and ‘Mary=beloved,’ where the two symbols connected

by an equal sign (X = Y ) denote a binding of the two, X and Y . As we

discussed in Chapter 3, we suppose the oscillation phases is the representation

of bindings. We run simulation of the network model, and test the achievement

by probing the state of the network.

We designed a neural network model illustrated in Figure 5.1. The network

consists of three components, a short-term memory holder, an autoassociative

network, and a heteroassociative network.

In the language-understanding task, these components cooperate to con-

struct the binding representation as demonstrated in Figure 5.2. When a sen-
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tence is input word-by-word to the network, the short-term memory holder

keeps the words in order and replays the sequence periodically. The autoasso-

ciative network recalls the corresponding lexical categories and attaches them to

the words. Then, the heteroassociative network detects grammatical relations

in the sequence to compose the memory items, and stores them as another item

to the short-term memory holder. Binding representation is also generated by

this composition. Since Lisman’s memory model has a shadowing effect, which

removes an old memory item at the time an overriding signal appears, an entry

is recursively composed to other entries on the memory holder. Eventually the

short-term memory holder holds a set of bindings, which represents the meaning

of the original sentence.

5.1.1 Neuron Model

As the basic model of a neuron, we adopt a pulsed neural network model.

More precisely, it is based on the Spike-Response model with external inputs,

described in Section 2.2. This implies several important decisions, as described

in the following.

First, we use a continuous-time model. We are interested in the construc-

tion of memory and meaning over a temporal domain in the real brain, whose

behavior is dynamic in a continuous time domain. Discrete-time models, such

as in SRN [8] or SHRUTI [46], limits temporal freedom, which contradicts our

purpose to simulate the temporal behavior of the brain. To reconstruct the

dynamics of the brain on the simulation, we choose to use a simulation based

on a continuous-time model.
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Second, we suppose the level of pulses of a given neuron is always constant.

It is known that neurons transmit information by voltage pulses of membrane

potential [14]; since all pulses of a given neuron look alike, the form of pulses

does not carry any information. Continuous signal levels, such as used in sig-

moidal gate neurons, are regarded as a modelization of rate coding, in which the

information is conveyed by the density of pulses. However, in the viewpoint of

temporal-coding, temporal difference greatly affects the meaning of same-rated

oscillation; to simulate such a case, it is better to model each pulse individually,

and to assign a constant activation level for the pulses.

On the memory model we represent the bindings by the synchrony of the

phases of pulse firings. Although the discussion in Chapter 3 contains the rep-

resentation of bindings other than the synchronous pulse firings (e.g. oscillation

of specific patterns in a specific phase difference), we adopt the simplest form

of the binding representation, synchrony of pulse firings, as a binding represen-

tation in our neural network model.

5.1.2 Short-term Memory Holder

The short-term memory holder is a set of memory neurons, which keep infor-

mation as in a neural memory model proposed by Lisman and Idiart [29]1.

As we discussed in Section 3.4, language understanding with temporal cod-

ing requires phase arbitration, which arbitrates signal phases for a newly in-

troduced memory item with existing memory items. Based on our claim of a

global property of phase arbitration, we surveyed physiological studies to look
1Our memory model is slightly different from Lisman’s model at some constants and re-

sponse functions, but their behaviors are logically equivalent.
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ABCDEF X ABCDEF XABCDE

Figure 5.3: Lisman’s memory model. At the left part of the figure, the sequence

of six memory items, ABCDEF, is periodically replayed in the same order by

the memory neurons. When a new item X is introduced, the item is prepended

to the sequence. Feedback inhibition (dimples in the graph) causes the rest of

the sequence to be shifted and, as a result, the last memory item F is spilled

out from the memory.

for the possible implementation of phase arbitration; and we found that the

phase precession phenomenon on the Theta wave oscillation [39] can account

for the phase arbitration. Among several models describing phase precession,

Lisman’s model has an advantage over other models of its mathematical sim-

plicity and comprehensiveness.

Figure 5.3 shows the simulation of Lisman’s memory model. In this model,
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three types of effects, afterdepolarization (ADP), theta wave oscillation, and

feedback inhibition, are combined to keep a series of activations on the memory.

The ADP effect is a phenomenon that a neuron rises its membrane potential

slowly after its activation. Although ADP is too brief to account for the duration

of short-term memory, but it is long enough to store information between cycles

of Theta–Alpha range oscillation (5–12Hz). Since Theta wave oscillation (8Hz)

is also combined to the signal level of the neuron, ADP triggered in one cycle

promotes firing in the next cycle, and as a consequence, ADP is refreshed each

cycle and firing is maintained for many cycles.

The feedback inhibition is also introduced to partition a cycle into subcycles,

on which multiple memories are stored in order. Since ADP works slowly, the

most excitable cells are therefore not those that just fired, but those that fired

earliest. Thus the slow increase in the ADP provides ramps of excitation that

could serve as a basis for ordering multiple memory items.

For simplicity we adopted localist representation model; in our simulation

model, we use 43 short-term-memory neurons, and assigned 30 words to 30

neurons, and subject-binding version of transitive verbs to 5 neurons, and 8

part-of-speeched to the remained neurons (See Figure 5.4).

5.1.3 Associative Networks

Two associative networks are used to provide lexical lookup and grammatical

inference. One is autoassociative to recall a complete memorized pattern from

an incomplete, noisy version of the same pattern. The other is heteroassociative,

that is, the network produces an associated pattern from an input pattern,
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Figure 5.4: Words and part-of-speeches assigned to a neuron in the simulation.

where the two patterns may differ.

This network design is inspired from the work of the sequence recall [47],

which showed that two reciprocally connected recurrent networks provide more

accurate sequence recall than a single heteroassociative network. Although re-

peated application of a heteroassociative network may seem to recall a sequence,

it tends to amplify errors repeatedly. This problem can be fixed by another au-

toassociative network, which corrects the error in every recall step. Lisman

suggests that two reciprocally connected recurrent networks, which are found

in dentate and CA3 cells in hippocampal region, work in this way [28]. We thus

designed our network model with the reciprocally connected heteroassociative

and autoassociative networks, and assigned roles to these networks.
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In our model, the autoassociative network is configured to provide a role

of lexical lookups in language understanding. For example, when a memory

neuron representing a word ‘Mary’ is activated at the beginning of the cycle

2 in Figure 5.2, the autoassociative network recalls a lexical category neuron,

<noun>, as an overlaid activity to the word, Mary. This role is consistent with

autoassociation if we regard a lexical lookup as recalling a complete lexicon

(Mary=<noun>) from a partial information (Mary). Since the autoassociative

network is connected to the memory cells with a small delay (2ms for a round

trip), the completion on the memory occurs almost immediately. Note that

lexical information such as <noun> is represented as a binding of the signal of

entities, e.g. Mary.

On the other hand, the heteroassociative network is configured to have a

role of grammatical inference. The heteroassociative network is connected to

the short-term memory holder by two bundles of synapses. Different delays

are assigned to the bundles (one is 10ms delay, and the other is 1ms) so that

the difference (10ms − 1ms) corresponds to the duration between two mem-

ory items in the short-term memory holder. If the relation of two memory

items matches a grammatical rule, the network outputs the result of the rule

application. For example, at the cycle 7 in Figure 5.2, the heteroassociative

network detects Mary=<noun> memory item followed by loves memory item.

The heteroassociative is set up to output a binding of <noun>, lover, and any-

thing bound to <noun> (denoted as X). As a result, the network outputs

Mary=<noun>=lover, which is stored into the short-term memory holder.

We adapted the network design to the Lisman’s memory model. First, we

assigned a large delay (100ms) to the return connection from the heteroasso-
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ciative network to the short-term memory holders. Second, the activation of

the heteroassociative network is suppressed for the second and later pairs of

memory items. The reasons and consequences of this adaptation are discussed

in Section 5.3.2.

5.1.4 Shadowing Effect in the Short-term Memory

It is necessary to retract an item from the memory when a grammatical rule is

applied to the item. For example, suppose a sequence of memory items, [love,

the, girl], is stored in the memory2 and solved by two grammar rule applications,

“the + girl → NP=the=girl” and “love + NP → beloved=NP”. When the first

rule is applied and old entries are not removed, the result is appended as a

new item for the memorized sequence, say, [love, the, girl, NP=the=girl]. From

this sequence it is hard to see the two memory items love and NP=the=girl are

combined by another grammar rule. It is necessary to remove the used item,

namely the and girl, from the memory.

In the studies of linguistic algorithms [20], a pop operation (that is, ‘remove

the last item from the sequence’) can solve this problem, since the memory

forms a push-down stack. However, we want to avoid incorporating such an

artificial complexity into the model. Ono’s report [40] of a shadowing effect

in the Lisman’s memory model shed light to this problem. As illustrated in

Figure 5.5, the shadowing effect is an inherent phenomenon in the Lisman’s

memory model that a memorization of a new item on a certain group of neurons

causes to vanish an old memory item on the same group of neurons. This effect

2In our simulation model, memory items are prepended to cause the reversed sequence.

For simplicity, we give this description based on an appending model.
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ABCDE F C ABDE F C ABDE F

Figure 5.5: Shadowing effect of Lisman’s memory model. The input of the

memory item “C” shadows the existing same memory item in the sequence.

works quite differently from pop operation, but sufficiently for the recursive

grammatical rule application.

We should be careful of the validity of the shadowing effect, since this is a

side effect of the Lisman’s memory model and we have no evidence of the effect

in the brain physiology. However, usage of the shadowing effect suggests us

possibility of the dynamics that organizes human language understanding.
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Rule Examples

Autoassociation

X = Y → X = Y Mary=<propn> → Mary=<propn>

where X = Y is a valid the=<det>=boy=<noun> → the=<det>=boy=<noun>

binding in the syntax the=<det>=boy=<noun>=(lover)=< vt subj >

→ the=<det>=boy=<noun>=(lover)=< vt subj >

Part-of-speech recall

word → word=pos Mary → Mary=<propn>

loves → loves=<vt>

(lover) → (lover)=<vt subj>

Table 5.1: Rules used in the training of the autoassociative network. A=B

denotes a binding representation of A and B (synchronization of activities).

5.1.5 Training of the Associative Networks

We designed separate learning models to configure connection weights in the

associative networks. Although unsupervised and integrated learning is im-

portant to prove the simplicity requirement, our first target is to empirically

prove that the temporal coding and phase arbitration can formulate a language

understanding mechanism. Thus we separated the learning process from the

simulation: We perform separate learning to determine connection weights,

and the fixed network is built into the neural network model. In the following

we describe the configuration of the learning models.

The associative networks are, when isolated, just multi-layer perceptrons

with a step threshold function [30]. Therefore only a good set of training data

and an appropriate learning algorithm are required to determine their connec-

tion weights. In the experiments, the training data was given by enumerating
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Rule Examples

Determiner–noun binding

det + noun → det=noun the=<det> + boy=<noun>

→ the=<det>=boy=<noun>

NP–verb(intransitive) subject binding

(det=)noun + vi the=<det>=boy=<noun> + sleeps=<vi>

→ det=noun=vi → the=<det>=boy=<noun>=sleeps=<vi>

John=<propn> + runs=<vi>

→ John=<propn>=sleeps=<vi>

NP–verb(transitive) subject binding

(det=)noun + vt a=<det>=lady=<noun> + has=<vt>

→ det=noun=vtsubj → a=<det>=lady=<noun>=(owner)=<vt subj>

she=<pn3> + reads=<vt>

→ she=<pn3>=(reader)=<vt subj>

verb(transitive) replacement

vt + (det=)noun=vtsubj has=<vt> + a=<det>=lady=<noun>=(owner)=<vtsubj>

→ vt → has=<vt>

likes=<vt> + Susan=<propn>=(liker)=<vtsubj>

→ likes=<vt>

verb(transitive)–NP object binding

vt + (det=)noun loves=<vt> + a=<det>=man=<noun>

→ det=noun=vt → a=<det>=man=<noun>=loves=<vt>

eats=<vt> + bread=<noun>

→ bread=<noun>=eats=<vt>

Keep silence when one is empty

ε + X → ε ε + loves=<vt> → ε

X + ε → ε loves=<vt> + ε → ε

Keep silence for other occasions

verb + det → ε loves=<vt> + a=<det> → ε

(det=)noun=vtsubj + vt → ε Susan=<propn>=(liker)=<vtsubj> + likes=<vt> → ε

Table 5.2: Rules used in the training of the heteroassociative network. A=B

denotes a binding representation of A and B (synchronization of activities). A

+ B denotes an activity A is preceded by another activity B, that is, B has
been stored in the memory just after A.
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Figure 5.6: Network configuration in connection weight learning

all possible cases of lexical lookups and grammatical rule applications. Ta-

bles 5.1 and 5.2 show the training data of autoassociative and heteroassociative

networks, respectively.

However, it is hard to find an appropriate learning algorithm. The neurons

in the simulation communicate with pulses, and every pulse from a neuron looks

alike. Therefore an output of the neurons are either presence or absence of a

pulse, namely, a binary output as in the perceptron neuron model. No known

learning algorithm with a hidden layer and binary neurons is theoretically sup-

ported.3

3The perceptron convergence procedure [38] can learn connection weights between the

hidden layer and the output layer. It is known that a large number of hidden layer neurons with

random connections between the input layer and the hidden layer will make the perceptron

convergence procedure learnable. This can be our choice, but we didn’t take this in order to

minimize the simulation model.
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For this problem we rely on a tentative solution: we introduce a neuron

model, which outputs a binary value and propagates error as a sigmoid neuron,

in the learning. Although the convergence of such a learning process is not

theoretically guaranteed, we think that this is enough for our purpose, because

the empirical tests showed that the algorithm can calculate the appropriate

connection weights for our training set.

Another problem is that associative networks in the simulation are under

influence of temporal fluctuation and trails of previous calculation, which works

as a noise factor. Even if the network is correctly learned in the noiseless

environment, it may not work in the actual simulation.

We solved this problem by introducing noise into the learning model. Fig-

ure 5.6 shows the learning configuration of the heteroassociative network. Small

amount of random noise is added to the output of input neurons. To the hidden

neuron, noise is added to both the threshold and the output. Moreover, output

neurons are altered to sigmoid neurons, which allows a back-propagation algo-

rithm to further modify the connection weight even if the inputs to the output

neurons are close to the threshold.

5.2 Experiments

We implemented the simulation model as described in Section 5.1. The het-

eroassociative network is designed with 50 hidden neurons. The connection

weights of the associative networks are calculated by the back-propagation

learning algorithm, which requires 1 hour of calculation on Pentium III 500MHz

with 128MB RAM. The simulation is run on Punnets, a discrete-event,
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Figure 5.7: State variable transition of the language-understanding network.
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Mary

<propn>

+Mary

Figure 5.8: State variable transition showing the effect of the autoassociative

network

continuous-time pulsed neural network simulator described in Chapter 4. In

the experiments, the simulation successfully produced binding representations

for 10 sentences, each consists of 3–5 words. The calculation time for the sim-

ulation is 0.3–0.8 seconds on the same machine.

Figure 5.7 shows the experiment with a sentence ‘Mary loves the boy’. Each

graph (Mary, <propn> etc.) shows a state variable of a short-term memory

neuron. The X axis shows the progress of time in the simulation. Note that,

as described in Section 5.1, all memory neurons are independent except con-

nections by feedback inhibition of Lisman’s memory model and two associative

networks, although the graphs are arranged so that the graph of a word neurons

is next to the graph of the corresponding part-of-speech neurons.

In the simulation, the system received only four external signals, Mary, loves,

the, and boy, whose timings are denoted in the figure as +Mary, +loves, +the,

and +boy, respectively. In each timing of the external signals, the autoassocia-
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Figure 5.9: State variable transition showing the effect of the heteroassociative

network

tive network is activated to cause the corresponding part-of-speech neuron (e.g.

<propn> for Mary) to fire immediately (Magnified is shown in Figure 5.8). The

activity of the part-of-speech neuron accompanies to the word signal throughout

the simulation.

The short-term memory holder keeps memory items as the activities of

neurons in a phase in the Theta oscillation. The Mary and <propn> signals

keep firing synchronously at the raising of the Theta wave until the second

signal (loves) is input. In the next cycle of the second signal input the phase of

the first signal is shifted to the second place at the time (1).

At the same time, the temporal difference of two signals falls into the window

of the heteroassociative network at the time (1). The heteroassociative network
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detects the two items should be combined, thus it returns the combined signals

of Mary and lover at the time (2). Note that, at this point, the activation of the

short-term memory becomes the semantic representation of a binding ‘Mary —

lover’ (Magnified is shown in Figure 5.9).

At the time (3), two groups of signals, the loves=<vt> signals and Mary=

<propn>=lover=<vt subj> signals, are processed by the heteroassociative net-

work. As a result, loves signal is produced at the time (4) to change the timing

of two signals.

After that, the the signal is input to the system. Since the heteroassociative

network is not activated by the consecution of the signal and loves signal, it is

just stored in the short-term memory. In the time between the the input and

boy input in the figure, it can be seen that three groups of signals, the, loves,

and Mary=lover, are periodically firing as a sequence.

When the boy signal is input, it is first prepended to the sequence. There-

after the heteroassociative network detects the consecution of the and boy at

the time (5), and the network puts a bound signal the=boy into the memory at

the time (6). Then, in the next cycle (time (7)), the signal the=boy comes next

to the signal loves, and the heteroassociative network is activated once again to

produce a bound signal of loves and the=boy at time (8).

Eventually, the short-term memory neurons become to hold two groups of

signals, Mary=lover and loves=the=boy. This is the binding representations

constructed from the input sentence; two groups of signals represent the two

bindings ‘Mary is the lover’ and ‘the boy is the beloved’ respectively.
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5.3 Discussion

5.3.1 Continuous-time Property

We need a discussion how the continuous-time neuron model affects the simu-

lation model. Since the continuous-time property increases the freedom of the

model, it also increases the difficulty in the design of the model.

Insofar as this neural network model is concerned, we were able to con-

struct without the continuous-time property. Although dynamics on Lisman’s

memory model require a continuous-time simulation model, we can emulate the

dynamics on a discrete-time simulator. The associative networks are separately

prepared by a learning on feed-forward networks; simulation of the network

became difficult due to fluctuation caused by the continuous-time property.

Still it is significant that we have shown a way to develop a large-scale im-

plementation on the continuous-time simulator with a complex neuron model.

Continuous-time property is required for neural network models that emulates

the dynamic behavior of the brain; future network models will depend to the

continuous-time behavior more deeply. Since the techniques for such a simula-

tor are absent, such a simulation tends to be restricted in an extremely small

network size. We think this simulation model opened a path to the efficient

simulation of more complex and large-scale dynamical neural network models.

One important application of the discrete-event simulation is the on-stage

learning of the associative networks. It is said that synaptic time-dependent

plasticity plays an important role on the short-term potentiation of hippocam-

pal neurons [1]. Such a time-dependent learning rule will certainly need a
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simulation with high temporal precision, since the difference of a small frac-

tion of milliseconds may change the direction of learning from potentiation to

depression. Discrete-time simulation framework is unsuitable for such a simula-

tion; it is the discrete-event simulation framework that can provide the required

temporal precision efficiently.

5.3.2 Neuron Model

In this simulation model we adopted Lisman’s mathematical model of the hip-

pocampus neurons [29]. As discussed in Section 5.1.2, new memory items are

prepended to the sequence in Lisman’s model,

Several studies, including Lisman’s later ones, suggest that a new memory

item is appended, not prepended, to the sequence in a hippocampus region

[55, 52, 28]. They pointed out that a compressed replay of a history, which

is formed by appending, helps to predict future quickly. However, Lisman’s

memory model we used in the network design prepends a new memory item to

the sequence; this behavior seems contradicting to this suggestion because the

sequence formed by prepending becomes a reversal replay of a history.

While the appending, ordinarily ordered memory model seems suitable for

our purpose, we used Lisman’s prepending, reversely ordered memory model

due to the absence of a mathematical model of pulsed neurons for appending

sequences. This difference of memory order causes substantial difference of

design of the neural network model. Figures 5.10 and 5.11 show the difference

of behavior between ordinarily ordered and reversely ordered memory models.

First, we assigned a large delay (100ms) to the return connection to the
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Figure 5.10: Grammatical rule application on an ordinarily ordered memory

model. Delay of the rule application is as short as 1 subcycle, and multiple

results are not stored because repeated rule applications overlap the previous

results of application. For simplicity, the shadowing effect is not concerned in

this figure.
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tions, which cause multiple results to be stored in the memory. In an actual

system such a repeated rule application have to be suppressed, as in our sim-

ulation model. For simplicity, the shadowing effect is not concerned in this

figure.
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memory cells, although the delay can be as short as one subcycle in the correctly

ordered memory model. This modification is necessary to store the result of

rule applications at the next arriving slot of the memory.

Second, a larger change is that we have to suppress the repeated rule ap-

plications. Since the heteroassociative network applies rules to a succession

of memory items, the rule is applied each time of the oscillation, as shown

in Figure 5.11. Although the multiple entries are removed by the shadowing

effect, such a repeated application confuses sequencing of the memory items.

Thus we suppressed repeated rule applications by adding a special neuron in

the heteroassociative network.

Note that the suppression is supposed to be unnecessary in the ordinarily

ordered model. As shown in Figure 5.10, the result of the rule application can

be placed to overlap on the next entry. This comes from the nature of the

memory model; since the heteroassociative network is supposed to predict a

future sequence of the compressed history replay, the prediction also works in

the middle of the replay. Thus the prediction delay is likely to be adjusted

to the delay between two memory items, and in this case, it is no reason to

suppress the repeated applications.

5.3.3 Grammaticality and Disambiguation

The current simulation model is too small to discuss the handling of grammat-

icality and disambiguation. However, it is beneficial to discuss these points

assuming an extended scale of the model.

One point is a handling of grammaticality. This system tries to construct
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meaning representations from a given sequence of words, irrespective of gram-

maticality. For example, traditional NLP systems cannot give a structure for a

sentence ‘One boat two girls three boys,’ because the sentence is not grammati-

cal. On the other hand, this system will be able to construct three meaning rep-

resentations correctly, ‘one=boat’, ‘two=girl’, and ‘three=boy’, although these

are not semantically related. Considering the fact that we easily understands

the ungrammatical sentence, this supports our claim that the language should

not captured only through structures.

Another important point is a disambiguation problem. Disambiguation is

one of the main issues on natural language processing. Although a person can

see the meaning of a syntactically ambiguous sentence, it is a difficult task for

current computers. It is expected that the human-like language understanding

model solves disambiguation in a natural way.

From a classical viewpoint, it is convincing that ambiguities cannot be solved

in this network model. Every grammatical rule is applied as soon as available,

and old lexical entries are removed by the shadowing effect. This seems as a

deterministic process, which prevents the network from applying another am-

biguous rule, which becomes available at the time another lexical item arrives

into the memory.

However, this is not the case in our simulation model, where the grammar

describes relations between semantic items. As illustrated in Figure 5.12, a

disambiguation process is no more than a selection of depending semantic items

on memory. Note that, in the lower part of the figure, the phrase ‘on the bench’

is attached to ‘girl’ after the meaning representation of ‘a letter for the girl’ is
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Figure 5.12: PP-attachment disambiguation in the simulation system. Since
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of dependent memory items.
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constructed. Such a process is contradictory to a structural view of syntax, in

which ‘on the bench’ is attached to ‘the girl’ before ‘the girl’ and ‘for’ constitute

a phrase. In the semantic representation, ‘for the girl’ is no more than ‘the girl’

bound with an attribute ‘target-to’, which allows to be attached by ‘on the

bench’.

It is still true that some sentence cannot be understood in a deterministic

processing. To solve this problem a non-deterministic language understand-

ing would be necessary. We believe that the connectionist representation of

language understanding is a good place for future study of non-deterministic

understanding process.

We do not claim that the simulation model can solve linguistic problems;

our claim is that we now have a new viewpoint of the linguistic process inspired

by the exploration of the brain mechanism. It is one of the major future works

to pursue the linguistic implication of our simulation model.

5.3.4 Integrated Learning

One major future work is the integration of learning into the simulation model.

In this simulation model, connection weights are manually given to the two

associative networks. Although we utilized a variant of a back-propagation

learning algorithm to determine connection weights, training are performed in

the separated environment with manually prepared data set.

Integration of the learning of connection weights into the simulation model

is necessary not only to discuss the acquisition of language ability but also

to achieve the soundness of understanding. Although the current simulation
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produces signals called as a semantic representation, it is still distant from

the understanding by human being, because of the lack of the grounding of

the semantic representation. We think that the grounding can be achieved by

learning the association of a representation to the non-verbal environmental

input, as described in Section 3.2.

Since the learning process required for the association is not a supervised

learning, we have to prepare an unsupervised learning rule. Synaptic time-

dependent plasticity [1] is a variant of Hebb’s rule with ability to learn temporal

coincidence of presynaptic and postsynaptic activities without teacher signals.

Since this plasticity is found in the mammal hippocampus cells, This plasticity

is convincing for a learning rule in the network. However, this rule seems to

require ordinary memory ordering, as described in Section 5.3.2.

5.4 Summary

We designed the neural network model, which converts a sequence of words to

binding representations. The mechanism uses the short-term memory mech-

anism, which stores input words and binding representations in order, and

grammar rules are applied on the memory items. As a result of the input

of a sentence as successive words, the binding representations corresponding to

the sentence is constructed on the short-term memory mechanism.

Although the simulation model is still primitive, we succeeded to show that

we can construct the mechanism within the requirements and preferences of

language understanding system we described in Chapter 3.Since some artificial

constructions are used to build the model, some important differences of the
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model from human language understanding are also revealed, pointing to further

directions of research.
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Chapter 6

Conclusion

In this dissertation, we approached to the problem ‘what is the understanding

for a computer?’ by constructing a neural network model of human language

understanding, focusing on the binding representation of the human brain. A

representation of feature bindings are included in the representation of inter-

mediate and final products of the construction of meaning representation from

a word sequence. In other words, language poses requirements to the capability

of the binding representation. With an assumption that bindings are explicitly

represented by some encoding in the brain, we explored the hardware imple-

mentation of the brain from the capability requirement, which the language

understanding process depends on.

As a result of this study, we clarified several important requirements and

preferences of the language understanding mechanism from the exploration, in-

cluding utilization of the temporal complexity. We also developed several tech-

niques, which enables us to develop a large-scale and efficient continuous-time
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simulator for neural network models based on the temporal coding. We finally

built a simulation of a neural network model based on the requirements and

techniques to validate the exploration and see the future direction of research.

The following are the requirements and preferences we clarified in the ex-

ploration: (1) If unencountered bindings are representable, representations and

mechanisms have to be additive. (2) Since any additive static binary represen-

tation cannot keep multiple bindings simultaneously, the neural representation

has to incorporate some complexity. (3) Among possible complexity sources,

the temporal complexity has advantage over the intensive and spatial complex-

ities. (4) If the temporal coding is used in the binding representation, some

mechanism is required to arbitrate temporal fluctuation of input with the tem-

poral coding. (5) The mechanism, we call phase arbitration, is likely to have

global property, since local solution to the phase arbitration is difficult.

In the simulation techniques, we introduced a discrete-event simulation

framework for efficient simulation of pulsed neural network. We focused on

delayed-firing prediction, which had been hard for a complex neuron model in

the existing simulators in the discrete-event simulation framework. We devel-

oped a second-order incremental partitioning method to predict delayed firings

for any practical neuron model. Moreover, we introduced gradient limit checking

to reduce the cost of the delayed-firing prediction. These techniques opened the

path for a large-scale and efficient neural network simulator with high temporal

precision.

We also developed a simulation of neural network model of human lan-

guage understanding, based on the requirements and preferences we explored .
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Although the simulation has been succeeded to show the validity of the require-

ments and preferences, we found several major differences from human language

ability at the gaps of the requirements filled by the physiological ideas. However,

this simulation model triggered a number of discussions related to linguistics,

physiology, and connectionist models, which indicate the future direction of

researches.
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