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1 Introduction

LUKE is software [1] used to perform apprenticeship learning [2] for environ-
ment model parameters efficiently. Apprenticeship learning for environment
model parameters is inverse reinforcement learning generalized into model pa-
rameter estimation. Users are required to give a sequence of actions supposedly
performed by experts, a sequence of observed states, and some credible prior
distributions. LUKE allows you to estimate the reward function, the transition
matrix, and the observation matrix from them.

In standard reinforcement learning [4], the state of an environment is es-
timated based on rewards set externally as well as your own actions and the
resultant rewards. Specifically, the model is updated so as to maximize the ex-
pected sum of rewards. In many cases, however, the reward function is unknown.
Conversely, the problem of estimating the reward function from an observation
sequence and an action sequence can be framed. This is inverse reinforcement
learning [3]. Apprenticeship learning is a generalized problem of inverse rein-
forcement learning, and allows you to estimate all of the transition matrix, the
observation matrix, and the reward function from a given observation sequence
and action sequence. This assumes that a sequence of observed actions have
been performed by experts familiar with the environment model.

This manual describes apprenticeship learning for environment model pa-
rameters, which is the basis of LUKE, and then describes how to install and use
it.

2 Apprenticeship Learning for Environment Model
Parameters

For details about apprenticeship learning, refer to the references [5, 2]. The
minimum required definitions are described here.
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The partially observable environment (POMDP) P is expressed by the tuple
〈S,A,Z, T,O,b(0), R, γ〉.

• S is a set of S states.

• A is a set of A actions.

• Z is a set of Z observations.

• T = 〈T a1 , . . . , T aA〉 is a state transition matrix of A matrixes with a size
of S × S, and the elements of T a = (tas′s) or tas′s = P (s′|s, a) indicates the
probability that the action a performed in the state s results in the state
s′.

• O = 〈Oa1 , . . . , OaA〉 is an observation matrix of A matrixes with a size of
Z × S, and the elements of Oa = (oazs) or oazs = P (z|s, a) indicates the
probability that the observation z is obtained when the action a results in
the state s.

• R = 〈Ra1 , . . . , RaA〉 is a reward matrix of A matrixes with a size of S×S,
and the elements of Ra = (ras′s) or ras′s indicates the reward value when
the action a performed in the state s results in the state s′.

• b(0) is the vector of the length S and indicates the probability distribution
of the initial state.

• γ ∈ [0, 1) is a discount rate.

In the POMDP, the purpose of the learning agent is to find the policy π that
maximizes the expected value of the sum of discounted rewards E[

∑∞
t=0 γ

Tratst ].
A policy is the action probability distribution when the belief b is given. The
belief here is the vector that indicates the current state probability distribution
in the environment.

Let’s see the POMDP parameterized with some unknown parameters θ or

POMDP Pθ = 〈S,A,Z, Tθ, Oθ,b(0)
θ , Rθ, γ〉. Assume that the learning agent

only knows the prior distribution p(θ), but experts know the true environment
parameter θ∗, and the optimum value Q∗(b, a) resulting from action on that
environment Pθ∗ .

Assume that experts select an action based on the soft-max policy with the
optimum value. Thus, the following holds:

π∗(a|b) =
maxn:an=a exp(βQ∗(b, a))∑

a′∈A exp(βQ∗(b, a′))
(1)

β is the inverse temperature parameter to control the optimality of action se-
lection.

Therefore, apprenticeship learning for environment models performed on
LUKE can be formulated as the problem of finding the parameter θ̂ that max-
imizes its posterior distribution p(θ|D) (and the optimum policy for Pθ̂) when
the demonstration of L steps D = (a1, z1, . . . , aL, zL) by experts is given.

LUKE supports the following three operation modes:
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• Demonstration creation mode (GEN): In this mode, you can enter the
POMDP P with known parameters and then calculate the optimum solu-
tion πP for the POMDP and output the demonstration D. This mode is
originally unnecessary, but is used to check model or parameter settings
before actual demonstrations are used.

• Environment learning mode (IOHMM): In this mode, you can enter the
parameterized POMDP Pθ, the prior distribution p(θ), and the demon-
stration D resulting from selecting an appropriate action, and then calcu-
late θ̂ without making an assumption about action selection. This mode
does not use apprenticeship learning and corresponds to conventional en-
vironment learning.

• Apprenticeship learning mode (APPL): In this mode, you can enter the
parameterized POMDP Pθ, the prior distribution p(θ), and the demon-

stration D by experts, and then calculate θ̂ on the assumption that experts
take action based on the optimum solution for the environment.

3 Installation

3.1 Required systems and libraries

If you are running Ubuntu 13.10 or later, all the necessary systems and libraries
other than CPLEX can be installed by running the following command:
apt-get install python g++-4.8 libboost1.53-dev libtbb-dev libnlopt-dev

graphviz

• Linux 3.2 or later (distribution, 32- or 64-bit version)
At present, Cygwin is not supported as it cannot compile intel tbb. It
may run on Visual C++ on Windows (Until recently, it was running, but
compilation can now no longer be performed because an internal error in
Visual C++ is caused. It may be able to be run if a way of avoiding the
problem is found).

• GCC version 4.8 or later (Pay attention to the required version.)
To build gcc on your system, install the necessary software (libgmp-dev
libmpc-dev libmpfr-dev liblibisl-dev libcloog-isl-dev), run the command
./configure --prefix=/usr/local --enable-languages=c,c++,lto to
create a config file, and then run the command make -j12 or sudo make

install. Specify the number of cores of the computer where compilation
is performed for the option j.

• Boost version 1.53 or later (Pay attention to the required version.)
If your Boost is not the latest version, run any one of the following com-
mands to perform compilation:
./bootstrap.sh --prefix=/usr/local

./b2 variant=debug install -j12
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./b2 variant=release install -j12

Specify the number of cores of the computer where compilation is per-
formed for the option j. Boost is a template library, but LUKE cannot
be run just by copying the header.

• Python
This is necessary to run waf. Most systems have it installed as standard.
If your system has not it installed, install it.

• Intel tbb
Obtain the library from http://threadingbuildingblocks.org/download

and install it.

• nlopt version 2.3 or later
Obtain the library from http://ab-initio.mit.edu/wiki/index.php/NLopt

and install it. To install it, execute ./configure and then make and make

install in this order.

• CPLEX: The current version of LUKE uses CPLEX from IBM to solve
linear programming problems. If you are a staff member of an educational
institution, you can use it free of charge by registering with the IBM Aca-
demic Initiative. This is used only to solve linear programming problems,
and it should not be difficult to use free software instead of CPLEX. If
CPLEX has not been installed, LUKE attempts to run without using it
(but, this attempt has not been successful so far).

3.2 Recommended library

• graphviz
This is a tool to visualize estimation results. The results of LUKE are given
as a .dot file. For a Debian distribution, it can be installed by running
the command apt-get install graphviz. Alternatively, obtain it from
http://www.graphviz.org/content/fsm and then compile it. Use it by
running a command like dot -Tpng nodes.dot > results.png.

3.3 Installing LUKE

• Download and expand the package 1.

• Compilation

1. It is trunk in pomdp: cd pomdp/trunk

2. If the C++ compiler and necessary libraries are not placed in the
default locations, set the environment variables.
export CXX=/usr/local/bin/g++ (bash)
export LD LIBRARY PATH=/usr/local/lib:/usr/local/lib64 (bash)

1In the future, it will be distributed as a tarball, but currently, it is distributed through
subversion. Obtain svn checkout https://dav.snowelm.com:4443/pomdp/.
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3. Specify the location of each library as an argument and create a
config file:
./waf configure

4. Build them:
./waf release

• Executing a sample:
Run a command
build/release/src/bayesmain --model=tiger.model --expertmodel=experttiger.model

--task=APPL EM. --task=APPL EM means to perform apprenticeship learn-
ing. If graphviz has been installed, you can see the execution result by
running the command dot -Tpng nodes.dot > nodes.png.

Many problems occur during the process of creating a config file. Especially,
if the libraries are not placed in the default locations, their locations must be
specified explicitly. You may be able to find the cause of a problem by checking
build/config.log created.

• --boost-libs=Location of the Boost library

• --boost-includes=Location of the header file of Boost

• --cplex=Location of CPLEX

• --tbb=Location of TBB

The author created a config file as follows:
./waf configure --cplex=/usr/local/lib/cplex --tbb=/usr/local/lib/tbb

4 Setting and Execution

4.1 Execution and command line arguments

When compilation is performed successfully, an executable file named build/release/src/bayesmain

is created. Then, create a model file according to the format described later, give
bayesmain command line arguments, and execute it. Arguments are described
below. Give arguments in the following format: --argumentname=parameter.
Arguments may be given in any order.

4.1.1 Basic argument

Specify the operation mode by the argument --task.

• LOAD ONLY: Only loads specified files. This mode is used to check syntax.

• GEN DEMO: Creates time-series data based on a given expert model. Specify
--expertmodel and --demolength, respectively. This mode is selected by
default.
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• APPL EM: Performs apprenticeship learning.

• IOHMM EM: Solves input/output hidden Markov models. This mode corre-
sponds to the environment learning mode mentioned before.

4.1.2 Other arguments

Some of thetask: A brief list of arguments and the default values can be shown
by specifying --help as an argument.

• --model: Specify a template model file.

• --demodata: Specify a time-series data file of expert actions.

• --algo: Specify an algorithm used for optimization2. Specify a negative
value to use gradient data. For details, refer to http://ab-initio.mit.edu/wiki/index.php/NLopt Algorithms.

0 Nelder-Mead Simplex method

1 BOBYQA method

2 COBYLA method

3 Principal AXIS method

4 Subplex-based method

5 Controlled Random Search method

6 Improved Stochastic Ranking Evolution Strategy method

−1 Moving Asymptotes method

−3 SLSQP method

−4 Low-storage BFGS method

−5 Preconditioned truncated Newton method

−6 Shifted limited-memory variable-metric, Rank1

−7 Shifted limited-memory variable-metric, Rank2

1 or the BOBYQA method is selected by default.

• --skiptest: Specify whether to skip a model test before actual execution.
Specify “1” to skip a model test.

• --verbosity: Specify output redundancy. Specify “2” to debug the
model.

• --test length: Specify the length of test time series for evaluating learn-
ing results after the completion of apprenticeship learning (1000000).

• --beta: Specify an inverse temperature parameter for the normalized
exponential function in creating a model internally from expert data.

2The argument is passed internally to the NLopt library.

6



• --stepsize: Specify a step size by which parameter values are changed
for optimization3.

• --xtimeout: Specify a length of time given to the parameter solver for
overall optimization. Specify the time in seconds. The default value is
86400 or 24 hours.

• --xtol: Specify a tolerance level in optimizing parameters. If this level is
not exceeded, it is assumed that parameters were optimized.

• --ftol: Specify a relative tolerance for function values.

• --ptimeout: Specify a length of time given to the POMDP solver for a
single internal iteration of optimization. Specify the time in seconds. The
default value is 600 or 10 minutes. If the length of time specified here is
too short, the POMDP solver may provide unstable solutions, preventing
you from arriving at the optimum solution.

• --ptol: Specify a tolerance for values in the POMDP solver.

• --delta: Specify a width considered not to make a difference between
probability values. The default value is 10−5.

• --seed: Specify a seed for random numbers.

• --transfer solution: If “1” is specified, the POMDP solver uses the
previous solution to increase the processing speed.

• --single: Solves problems using single-precision real. This may reduce
memory used, increasing the processing speed.

• --ndemos: Specify how many pieces of internally created time series should
be output when expert data is given in model format.

• --demo length: Specify a time series length when expert data is given in
model format and converted internally into time-series data. The default
value is 100.

• --expertmode: Specify an expert model (model obtained after sufficient
learning). Do not specify a demo file.

• --outfile: Specify an output file. In GEN DEMO mode, a demo file is
output. If an output file is not specified, the results are output to the
standard output. (NULL)

3The argument is passed internally to the NLopt library.
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4.2 Writing a demo file

A demo file contains time-series data of expert actions and each line has the
following structure. A blank line may be put between these lines. Characters
following “%” up to the line end are considered as comments.

Action, observation

Actions and observations are written in the same notation as in model files.

4.3 Writing a model file

The syntax for model files is similar to MATLAB, but note that matrix indexes
start at 0. A statement ends with “;.” Characters following “%” up to the line
end are commends. The complicated method of writing a model file is described
here by taking an apprenticeship learning version of the tiger problem famous
in the partially observable Markov model (POMDP) as an example.

The original tiger problem assumes the situation where two doors are in front
of the agent’s eyes and there is a room on the other side of each door. There is
a tiger in one room, and money in another room. The agent does not know in
which room a tiger is and can select an action to take from among three options:
open the right door (open right), open the left door (open left), or listen to
the sound from behind the door (listen). If the room the agent selected has a
tiger, he is eaten by it. Thus, a negative reward is set. If the room the agent
selected has money, a positive reward is set. If the agent selects to listen to the
sound, a slightly negative reward is set. The agent optimizes actions so as to
maximize the expected reward and learns to open the door of the room with no
tiger.

In apprenticeship learning, actions of experts familiar with a problem model
(states and state transition) and the true environment settings (the probabil-
ity of the room having a tiger, the probability of mishearing the sound, the
loss suffered when the door of the room with a tiger is opened, etc.) and the
observations of the results of those actions are given as time-series data (demon-
strations). Given below is a model file for this problem:

%Gives three options as an action set: open the left door, open the right door,

%and listen to the sound.

[open_left, open_right, listen] = ActionSet;

%Gives two possible states as a state set: a tiger may be in the left room or in

%the right room.

[tiger_left tiger_right] = StateSet;

%Gives two possible types of observation as an observation set: roars may come

%from behind the left door or the right door.

[grawl_left, grawl_right] = ObservationSet;

%Defines the parameter badreward and specifies that it follows a normal distribution.
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badreward = Normal( -50, 50 );

%Defines the parameters InitProb, ListenLeft, and ListenRight and specifies that

%they follow a beta distribution.

InitProb = Beta( 3, 3 );

ListenLeft = Beta( 5, 3 );

ListenRight = Beta( 5, 3 );

%Init is a reserved word. Gives an array of initial states as a column vector.

Init = [InitProb ; 1-InitProb];

%Trans is a reserved word. Gives state transition matrixes. eye(2) is a 2x2 identity matrix.

Trans(:,:,open_left) = [Init Init ];

Trans(:,:,open_right) = [Init Init ];

Trans(:,:,listen) = eye(2);

%Obser is a reserved word. Gives observation matrixes. ones(2,2) is a 2x2 matrix

%where all the elements are 1.

%allot is a reserved function to allot the remaining value equally to rem_.

Obser(:,:,open_left) = ones(2,2) * 0.5;

Obser(:,:,open_right) = 0.5;

Obser(:,:,listen) = allot([ListenLeft 1-ListenRight ; PlaceHolder PlaceHolder] );

%Rewar is a reserved word. Gives reward matrixes to estimate.

Rewar(:, :, listen) = -1;

Rewar(:, tiger_left, open_left) = badreward;

Rewar(:, tiger_right, open_right) = badreward;

Rewar(:, tiger_right, open_left) = +10;

Rewar(:, tiger_left, open_right) = 10;

%Discount is a reserved word to give a discount rate.

Discount = 0.75;

Reserved words, variables, and built-in functions are listed and summarized
below. There are three reserved words:

• ActionSet: Action set

• StateSet: State set

• ObservationSet: Observation set

These reserved words can be called twice or more to specify a two- or more
dimensional space. Let’s see the following example:
[s11, s12, s13] = StateSet; [s21, s22, s23] = StateSet;
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In this example, states are expressed by a pair of values, and each set has three
values. In other words, there are nine possible state values (s11 + s21, s11 +
s22, s11+s23, s12+s21, s12+s22, s12+s23, s13+s21, s13+s22, s13+s23). Ac-
tually, the values 0, . . . , 8 are assigned to them. States, actions, and observations
may be referenced by the respective names defined here or the corresponding
integers. The same applies to demonstration data files.
There are five reserved variable names:

• Init: Initial state b0(s)

• Trans: State transition matrix p(s′|s, a)

• Obser: Observation matrix p(z|s, a)

• Rewar: Reward matrix R(s′, s, a)

• Discount: Discount rate γ

Especially, note that Trans, Obser, and Rewar are three-dimensional matrixes.
LUKE allows you to create any matrix slices according to the notation of MAT-
LAB. For example, Obser(:,:,open left) represents a slice where the third
element of Obser is open left (overall matrix of the first and second elements).
In addition, any variable name other than these reserved variable names can be
defined and used by placing it in the left-hand side of =.
The following two probability distributions are used:

• Normal(µ,σ): Normal distribution. This is a normal conjugate prior
distribution and is often used as the initial value of a continuous variable.

• Beta(α,β): Beta distribution. This is a binomial conjugate prior distri-
bution and is often as the initial value of a random variable. A multinomial
distribution can be expressed by combining beta distributions.

These must be assigned to a variable before they can be used. These are
Bayesian probability distributions to express the uncertainty of an environment,
and cannot be used to describe the probabilistic behavior of an environment.
For example, the reward distribution of the results of a gamble cannot be ex-
pressed (you must divide the next state and assign different reward values to
them).
A built-in function is mainly used as an auxiliary function to write a program
briefly, and the following built-in functions are implemented:

• allot(rem ): Equally allots probability. This function adjusts the value of
the placeholder PlaceHolder (the short form may also be used) in order
that the sum of each column of the matrix becomes 1. This calculation is
performed on a column-by-column basis.

allot

0.3 0.2 0.5
0 2×

3×

 =

0.3 0.2 0.5
0 0.4 0.2

0.7 0.4 0.3
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• conv2(M, N): Returns the convolution of two given sparse matrixes M,N .
By specifying a transition matrix for the state set S1 in M and a transition
matrix for the state set S2 in N and performing convolution, the transition
matrix for the state set S1×S2 can be obtained. State spaces that interact
with each other only under special conditions can be easily described by
performing the convolution of a matrix containing placeholders, making
some changes, and then calling the function allot.

• conv3(M, N): Returns the three-dimensional convolution of two given
sparse matrixes M,N .

• carteset(s1, s2): Creates the direct product of set 1 and set 2.

• expand(m, v1, v2 ...): Shifts the matrix m by the distances specified
for the vectors with an index v1, v2, ... and calculates the sum. If two
vectors with an index are specified, the result is equal to the convolution
of the matrix m and the matrix temp(v1,v2) = 1; (or conv2(m, temp)).
This function is used to expand a reward function defined for subspace 1
in a direction toward subspace 2.

In addition, the following functions of MATLAB can be used:

• eye(n): Returns an identity matrix with a size of n× n.

• ones(n1, ...): Returns a matrix with a specified size where all the ele-
ments are 1.

• zeros(n1, ...): Returns a matrix with a specified size where all the
elements are 0.

• length(v): Returns a vector length.

• size(m): Returns the size of a matrix as a vector.

• horzcat(m, n): Connects matrixes in a horizontal direction. You may
also type “[m, n]” or “[m n].”

• vertcat(m, n): Connects matrixes in a vertical direction. You may also
type “[m; n].”

• cat3(m, n): Connects matrixes in a three-dimensional direction.

• display(x): Shows the content of x.

4.4 Output format

When execution is finished, a nodes.dot file is created. By processing this file
with graphviz, the results can be obtained as a PNG image or other forms.
The execution log is output to a file specified by --outfile or to the standard
output. A list of settings, sample values initialized with random numbers, and
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the given model are output first, and then Solve and Calculate FIB are output
and followed by a state.

@Iteration Time(s) #Policy #Belief #BelHash #node/#free UpperBound LowerBound Gap

@ 16 15.72 2 481 59328 59330/ 0 -16.845 -17.069 0.22405

@ 32 23.63 2 581 70732 70734/ 0 -16.848 -17.069 0.22115

@ 48 23.72 2 574 70133 70135/ 0 -16.848 -17.069 0.22115

@ 59 28.56 2 493 70133 70216/ 0 -17.025 -17.069 0.044227

@ 60 32.92 2 493 70133 70216/ 0 -17.031 -17.069 0.037939

In addition, the state log likelihood is shown in the form of Finish solve,

loglike=-*** and these are repeated.
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